Skip to main content
Log in

Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we report a simple method for preparing p-type ZnO thin films by thermal oxidization of Zn3N2 thin films. The Zn3N2 films were grown on fused silica substrates by using plasma-enhanced chemical vapor deposition from a Zn(C2H5)2 and NH3 gas mixture. The Zn3N2 film with a cubic antibixbyite structure transformed to ZnO:N with a hexagonal structure as the annealing temperature reached 500 °C. When the annealing temperature reached 700 °C, a high-quality p-type ZnO film with a carrier density of 4.16 × 1017 cm−3 was obtained, for which the film showed a strong near-band-edge emission at 3.30 eV without deep-level emission, and the full width at half-maximum of the photoluminescence spectrum was 120 meV at room temperature. The origin of the ultraviolet band was the overlap of free exciton and the bound exciton. The N concentration was as high as 1021 cm−3, which could be controlled by adjusting the parameters of the annealing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Reynolds, D.C. Look, and B. Jogai, Solid State Commun. 99, 873 (1996).

    Article  CAS  Google Scholar 

  2. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).

    Article  CAS  Google Scholar 

  3. T.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).

    Article  CAS  Google Scholar 

  4. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  5. A. Mitra and R.K. Thareja, J. Appl. Phys. 89, 2025 (2001).

    Article  CAS  Google Scholar 

  6. R.F. Service, Science 276, 895 (1997).

    Article  CAS  Google Scholar 

  7. X.T. Zhang, Y.C. Liu, L.G. Zhang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, G.Z. Zhong, X.W. Fan, and X.G. Kong, Chin. Phys. Lett. 19, 127 (2002).

    Article  CAS  Google Scholar 

  8. T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985).

    Article  Google Scholar 

  9. Y. Sato and S. Sato, Thin Solid Films 281–282, 445 (1996).

    Article  Google Scholar 

  10. X.Q. Wang, S.R. Yang, J.Z. Wang, M.T. Li, X.Y. Jiang, G.T. Du, X. Liu, R.P.H. Chang, J. Cryst. Growth 226, 123 (2001).

    Article  CAS  Google Scholar 

  11. Y.F. Yan, S.B. Zhang, S.J. Pennycook, and S.T. Pantelides (unpublished).

  12. T. Yamamoto and H. Katayama -Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999).

    Article  CAS  Google Scholar 

  13. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 38, L1205 (1999).

    Article  CAS  Google Scholar 

  14. M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, Physica B 302–303, 140 (2001).

    Article  Google Scholar 

  15. X.L. Guo, H. Tabata, and T. Kawai, J. Cryst. Growth. 223, 135 (2001).

    Article  CAS  Google Scholar 

  16. K. Kuriyama, Y. Takahashi, and F. Sunohara, Phys. Rev. B 48, 2781 (1993).

    Article  CAS  Google Scholar 

  17. M. Futsuhara, K. Yoshioka, and O. Takai, Thin Solid Films 322, 274 (1998).

    Article  CAS  Google Scholar 

  18. B.S. Li, Y.C. Liu, D.Z. Shen, Y.M. Lu, J.Y. Zhang, X.G. Kong, Z.Z. Zhi, and X.W. Fan . J. Vac. Sci. Technol. A 20, 501 (2002).

    Google Scholar 

  19. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 38, L1025 (1999).

    Article  Google Scholar 

  20. A. Tsukazaki, H. Saito, K. Tamura, M. Ohtani, H. Koinuma, M. Sumiya, S. Fuke, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 81, 235 (2002).

    Article  CAS  Google Scholar 

  21. Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, and H.W. White, J. Cryst. Growth 216, 330 (2000).

    Article  CAS  Google Scholar 

  22. T. Aoki, Y. Hatanaka, and D.C. Look, Appl. Phys. Lett. 76, 3257 (2000).

    Article  CAS  Google Scholar 

  23. Y.R. Ryu, W.J. Kim, and H.W. White, J. Cryst. Growth 219, 419 (2000).

    Article  CAS  Google Scholar 

  24. D. Wang, Y.C. Liu, J.Y. Zhang, Z.Z. Zhi, D.Z. Shen, Y.M. Lu, and X.W. Fan (unpublished).

  25. Y.Z. Yoo, Y. Osaka, T. Fukumura, Z.W. Jin, M. Kawasaki, H. Koimuma, T. Chikyow, P. Ahmet, A. Setoguchi, S.F. Chichibu, Appl. Phys. Lett. 78, 616 (2001).

    Article  CAS  Google Scholar 

  26. M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, Physica B 302–302, 140 (2001).

    Article  Google Scholar 

  27. T.V. Butkuzi, T.G. Chelizde, A.N. Georgobiani, D.L. Jashiashvili, T.G. Khulordava, and B.E. Tsekvava, Phys. Rev. B 58, 10692 (1998).

    Article  Google Scholar 

  28. M.K. Ryu, S.H. Lee, M.S. Jang, G.N. Panin, and T.W. Kang, J. Appl. Phys. 92, 154 (2002).

    Article  CAS  Google Scholar 

  29. H.J. Ko, Y.F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, Appl. Phys. Lett. 76, 1905 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B.S., Liu, Y.C., Zhi, Z.Z. et al. Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films. Journal of Materials Research 18, 8–13 (2003). https://doi.org/10.1557/JMR.2003.0003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0003

Navigation