Skip to main content
Log in

Microstructural evolution of dense and porous pyroelectric Pb1−xCaxTiO3 thin films

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pb1−xCaxTiO3 thin films with x = 0−0.3 for pyroelectric applications were deposited on platinized silicon wafers by chemical solution processing. Ca-substitution for Pb in PbTiO3 results in a reduced c/a ratio of the unit cell, which, in turn, leads to better pyroelectric properties. Control of nucleation and growth during rapid thermal annealing to 650 °C allowed the formation of either highly porous or dense (111) oriented films. The inclusion of pores creates a matrix-void composite with the low permittivity desired for pyroelectric applications, resulting in a high figure of merit. The growth mechanisms for the microstructural evolution of both dense and porous films were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Rutherford backscattering spectrometry and allowed establishment of microstructure/property relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986).

    Article  CAS  Google Scholar 

  2. P. Muralt, Rep. Prog. Phys. (in press).

  3. T. Ikeda, J. Phys. Soc. Jpn. 13, 335 (1958).

    Article  CAS  Google Scholar 

  4. P. Muralt, T. Maeder, L. Sagalowicz, S. Scalese, D. Naumovic, R. G. Agostino, N. Xanthopolus, H. J. Mathieu, L. Patthey, and E.L. Bullock, J. Appl. Phys. 83, 3835 (1998).

    Article  CAS  Google Scholar 

  5. A. J. Moulson and J. M. Herbert, Electroceramics (Chapman and Hall, London, 1990).

    Google Scholar 

  6. P. Muralt, Revue de l’électricité de de l’électronique 9, 56 (1996).

    Article  Google Scholar 

  7. R. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull. 13, 525 (1978).

    Article  CAS  Google Scholar 

  8. A. Seifert, P. Muralt, and N. Setter, in Proceedings of the 5th International Conference on Electronic Ceramics and Applications, Aveiro, Portugal, 1996 (European Ceramic Society), p. 329.

  9. S. R. Gurkovich and J. B. Blum, in Ultrastructure Processing of Ceramics, Glasses and Composites (Wiley-Interscience, New York, 1984), p. 152.

  10. M. L. Calzada, F. Carmona, R. Sirera, and B. Jimenez, in Science and Technology of Electroceramic Thin Films (Kluwer Academic Publishers, The Netherlands, 1995), p. 157.

  11. J. B. Blum and S. R. Gurkovich, J. Mater. Sci. 20, 4479 (1985).

    Article  CAS  Google Scholar 

  12. T. Tani and D. A. Payne, J. Am. Ceram. Soc. 77, 1242 (1994).

    Article  CAS  Google Scholar 

  13. A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, Chem. Mater. 6, 750 (1994).

    Article  CAS  Google Scholar 

  14. A. Seifert, F. F. Lange, and J. S. Speck, J. Mater. Res. 10, 680 (1995).

    Article  CAS  Google Scholar 

  15. C. J. Brinker and G.W. Scherer, Sol-gel Science. The Physics and Chemistry of Sol-gel Processing (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  16. S. Chewasatn and S. J. Milne, J. Mater. Sci. 32, 575 (1997).

    Article  CAS  Google Scholar 

  17. J. L. Tu and S. J. Milne, J. Mater. Res. 11, 2556 (1996).

    Article  CAS  Google Scholar 

  18. N. P. Hartley, P. T. Squire, and E. H. Putley, J. Phys. E 5, 787 (1972).

    Article  CAS  Google Scholar 

  19. M. Daglish, Int. Ferroelectrics, (in press).

  20. A. Seifert, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 2409 (1998).

    Article  CAS  Google Scholar 

  21. C. Lakeman, Ph.D. Thesis, Univ. of Illinois, 1994.

  22. A. I. Kingon and B. C. Clark, J. Am. Ceram. Soc. 66, 256 (1983).

    Article  CAS  Google Scholar 

  23. H. E. Brown, Lead Oxide–Properties and Applications (Int. Lead Zinc Research Organization Inc., New York, 1985).

    Google Scholar 

  24. M.A. Subramanian, G. Aravamudan, and G.V. S. Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  CAS  Google Scholar 

  25. C. K. Kwok and S. B. Desu, Appl. Phys. Lett. 60, 1430 (1992).

    Article  CAS  Google Scholar 

  26. R. Sirera, M. Malic, M. Kosec, and M. L. Calzada, in Proceedings of the 5th International Conference on Electronic Ceramics and Applications, Aveiro, Portugal, 1996 (European Ceramic Society), p. 333.

  27. H. Hu, C.J. Peng, and S.B. Krupanidhi, Thin Solid Films 223, 327 (1993).

    Article  CAS  Google Scholar 

  28. C.H. Hsueh, A. G. Evans, and R.L. Coble, Acta Metall. 30, 1269 (1982).

    Article  Google Scholar 

  29. C.G. Levi, Acta Mater. 46, 787 (1998).

    Article  CAS  Google Scholar 

  30. S.V. Krishnaswamy, R. Messier, P. Swab, L. L. Tongson, and K. Vedam, J. Electr. Mater. 10, 433 (1981).

    Article  CAS  Google Scholar 

  31. G. Arlt, Ferroelectrics 76, 451 (1987).

    Article  CAS  Google Scholar 

  32. G. Arlt and N. A. Pertsev, J. Appl. Phys. 70, 2283 (1991).

    Article  Google Scholar 

  33. K. Carl and K. H. Härdtl, Ferroelectrics 17, 473 (1978).

    Article  CAS  Google Scholar 

  34. T. Baiatu, R. Waser, and K-H. Hardtl, J. Am. Ceram. Soc. 73, 1663 (1990).

    Article  CAS  Google Scholar 

  35. J. F. Scott, C. A. Araujo, B. M. Melnick, L.D. McMillan, and R. Zuleeg, J. Appl. Phys. 70, 382 (1991).

    Article  CAS  Google Scholar 

  36. W.L. Warren, G. E. Pike, K. Vanheusden, D. Dimos, B. A. Tuttle, and J. Robertson, J. Appl. Phys. 79, 9250 (1996).

    Article  CAS  Google Scholar 

  37. M. Kohli, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 3217 (1998).

    Article  CAS  Google Scholar 

  38. M. Kohli, A. Seifert, and P. Muralt, Int. Ferroelectrics 22, 453 (1998).

    Article  CAS  Google Scholar 

  39. M. Kohli, C. Wuethrich, K. Brooks, B. Willing, M. Forster, P. Muralt, N. Setter, and P. Ryser, Sensors and Actuators A 60, 147 (1997).

    Article  CAS  Google Scholar 

  40. N. M. Shorroks, A. Patel, M.J. Walker, and A.D. Parsons, Microelectronic Eng. 29, 59 (1995).

    Article  Google Scholar 

  41. E. Yamaka, H. Watanabe, H. Kimura, H. Kanaya, and H. Ohkuma, J. Vac. Sci. Technol. A 6, 2921 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, A., Sagalowicz, L., Muralt, P. et al. Microstructural evolution of dense and porous pyroelectric Pb1−xCaxTiO3 thin films. Journal of Materials Research 14, 2012–2022 (1999). https://doi.org/10.1557/JMR.1999.0272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0272

Navigation