Skip to main content
Log in

Relations Between Coarsening and Densification and Mass Transport Path in Solid-state Sintering of Ceramics: Model Analysis

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The correlations between coarsening (including grain and pore growth) and densification, and the effects of mass transport on particle coarsening and densification were discussed based on the simple particle array models and for the real particle compacts. Grain boundary motion could cause particle coarsening only under a certain particle size distribution but not densification; mass transport is reasoned to contribute to both grain growth (particle coarsening) and shrinkage for one-dimensional particle arrays. Under a certain limitation for the change of the particle size aspect ratio during sintering, very limited effects of grain grown by itself on the shrinkage of particle a rrays throughreinitiating the sintering could be found. For a real powder compact system, mass transport between the particles, which surround a pore, contributes to the particle coarsening and densification when the pore is thermodynamically unstable and only to particle coarsening when the pore is thermodynamically stable. The mass transport mechanism for both particle coarsening and densification would be the same, which cannot exclude, at least on thermodynamics, the contribution from surface diffusion in the intermediate stage of sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Bokov and I. E. Myl’nikova, Sov. Phys. Solid State, 3, 613 (1961).

    Google Scholar 

  2. T.R. Shrout, S.L. Swartz, and M.J. Haun, Am. Ceram. Soc. Bull. 63, 808 (1984).

    CAS  Google Scholar 

  3. M. Yonezawa, Ferroelectr. 68, 181 (1986).

    Article  CAS  Google Scholar 

  4. M. Furuya, T. Mori, A. Ochi, S. Saito, and S. Takahashi, Jpn. J. Appl. Phys. 31, 3139 (1992).

    Article  CAS  Google Scholar 

  5. S. Takahashi, S. Miyao, S. Yoneda, and M. Kuwabara, Jpn. J. Appl. Phys. 32, 4245 (1993).

    Article  CAS  Google Scholar 

  6. G. Zhilun, L. Longtu, G. Suhua, and Z. Xiaowen, J. Am. Ceram. Soc. 72, 486 (1989).

    Article  Google Scholar 

  7. G. Zhilun, L. Lingtu, L. Hongqing, and Z. Xiaowen, Ferroelectr. 101, 93 (1990).

    Article  Google Scholar 

  8. N. Ichinose and M. Kimura, Jpn. J. Appl. Phys. 30, 2220 (1991).

    Article  CAS  Google Scholar 

  9. J. H. Moon, H. M. Jang, and B. D. You, J. Mater. Res. 8, 3184 (1993).

    Article  CAS  Google Scholar 

  10. M. S. Yoon and H. M. Jang, Ferroelectr. 173, 191 (1995).

    Article  CAS  Google Scholar 

  11. J. R. Belsick, A. Halliyal, U. Kumer, and R. E. Newnham, Am. Ceram. Soc. Bull. 66, 664 (1987).

    CAS  Google Scholar 

  12. R. Vivekanandan and T.R. N. Kutty, Ceram. Int. 14, 207 (1988).

    Article  Google Scholar 

  13. G. A. Rossetti, Jr., D. J. Watson, R.E. Newnham, and J.H. Adair, J. Cryst. Growth 116, 251 (1992).

    Article  CAS  Google Scholar 

  14. P. K. Dutta and J. R. Gregg, Chem. Mater. 4, 843 (1992).

    Article  CAS  Google Scholar 

  15. H. Cheng, J. Ma, B. Zhu, and Y. Cui, J. Am. Ceram. Soc. 76, 625 (1993).

    Article  CAS  Google Scholar 

  16. C. H. Lu and S. Y. Lo, Mater. Res. Bull. 32, 371 (1997).

    Article  CAS  Google Scholar 

  17. C. H. Lu and W. J. Hwang, Mater. Lett. 27, 229 (1996).

    Article  CAS  Google Scholar 

  18. T.R. Shrout and A. Halliyal, Am. Ceram. Soc. Bull. 66, 704 (1987).

    CAS  Google Scholar 

  19. C. H. Lu and W. J. Hwang, Ceram. Int. 22, 373 (1996).

    Article  CAS  Google Scholar 

  20. Powder Diffraction File, Card No. 34–103, Joint Committee on Powder Diffraction Standards, Swarthmore, PA.

  21. Powder Diffraction File, Card No. 35–739, Joint Committee on Powder Diffraction Standards, Swarthmore, PA.

  22. K. Uchino, F. Kojima, and S. Nomura, Ferroelectr. 15, 69 (1977).

    Article  CAS  Google Scholar 

  23. T. Takenaka, A. S. Bhalla, and L. E. Cross, J. Am. Ceram. Soc. 72, 1016 (1989).

    Article  CAS  Google Scholar 

  24. B. P. Blazhievskii, V. A. Isupov, L. V. Kozlovskii, L. I. Mikhailova, V. I. Moskalev, and N. E. Semenov, Inorg. Mater. 22, 418 (1986).

    Google Scholar 

  25. C. H. Lu and W.S. Hwang, J. Mater. Res. 10, 2755 (1995).

    Article  CAS  Google Scholar 

  26. C. H. Lu and W.S. Hwang, J. Ceram. Soc. Jpn. 104, 587 (1996).

    Article  CAS  Google Scholar 

  27. F. Kuchar and M. W. Valena, Phys. Status Solidi 6, 525 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J.L. Relations Between Coarsening and Densification and Mass Transport Path in Solid-state Sintering of Ceramics: Model Analysis. Journal of Materials Research 14, 13 (1999). https://doi.org/10.1557/JMR.1999.0188

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0188

Navigation