Skip to main content
Log in

Intercalation of nonlinear amines into γ-titanium phosphate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The intercalation of amines (aniline, benzylamine, cyclohexylamine, piperidine, pyridine, pyrazine, piperazine, naphthylamine, and indoline) into γ-titanium phosphate, Ti(H2PO4)(PO42H2O, has been investigated by the batch method and by exposing the host to the amines vapor. The changes in the interlayer distance of the solid during the intercalation process were followed by x-ray powder diffraction. The new intercalates were characterized by chemical and thermal analysis and IR spectroscopy. Materials with a monolaminar and/or bilaminar arrangement of amine molecules in the phosphate interlayer region are obtained, as a function of the amine nature. The thermal decomposition of the intercalates (nitrogen atmosphere) takes place in three stages: dehydration, amine removal, and phosphate-to-pyrophosphate condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Norlund, E. Krogh, I. G. Andersen, G. Alberti, M. Nielsen, and M. S. Lehmann, Acta Chem. Scand. 44, 865 (1990).

    Article  Google Scholar 

  2. D. M. Poojary, B. Shpeizer, and A. Clearfield, J. Chem. Soc., Dalton Trans., 111 (1995).

    Google Scholar 

  3. M. A. Salvadó, S. García-Granda, and J. Rodríguez, Mater. Sci. Forum 166–169, 619 (1994).

    Article  Google Scholar 

  4. G. Genti, F. Trifiro, J.R. Ebner, and V. M. Franchetti, Chem. Rev. 88, 55 (1988).

    Article  Google Scholar 

  5. R. Burch, Catalysis Today 2, 185 (1988).

    Article  Google Scholar 

  6. M. G. Clerici, G. Alberti, M. Malentacchi, G. Bellussi, A. Prevedello, and C. Corno, Eur. Pat., Appl., E.P. 386, 845 (1989); C.A. 114, 165078s (1991).

    Google Scholar 

  7. K. D. Krener, Chem. Mater. 8, 610 (1996).

    Article  Google Scholar 

  8. A. S. Macas, M. J. G. Garmendía, and A. Rodríguez, An. Fis. Quim. 58B, 433 (1969).

    Google Scholar 

  9. R. Glaeser, Comt. Rend. 226, 935 (1948).

    CAS  Google Scholar 

  10. E. Gutierrez Ríos, A. Rodríguez, and M. I. Galache, An. Fis. Quim. 58B, 53 (1962).

    Google Scholar 

  11. G. Lagaly, H. Stange, M. Taramosso, and A. Weiss, Israel J. Chem. 8, 399 (1970).

    Article  CAS  Google Scholar 

  12. G. Pfirrmann, G. Lagaly, and A. Weiss, Clays and Clay Minerals 21, 239 (1973).

    Article  CAS  Google Scholar 

  13. G. Lagaly, H. Stange, and A. Weiss, Proc. Inter. Clay Conf., 37 (1972).

    Google Scholar 

  14. U. Costantino, J. Inorg. Nucl. Chem. 43, 1895 (1981).

    Article  CAS  Google Scholar 

  15. G. Alberti and U. Costantino, in Intercalation Chemistry, edited by M. S. Wittingham and A. J. Jacobson (Academic Press, San Diego, CA, 1982).

  16. R. M. Tindwa, D. K. Ellis, G. Z. Peng, and A. Clearfield, J. Chem. Soc. Faraday Trans. 1, 81, 545 (1985).

    Google Scholar 

  17. F. Menéndez, A. Espina, C. Trobajo, and J. Rodríguez, Mater. Res. Bull. 25, 1531 (1990).

    Article  Google Scholar 

  18. F. Menéndez, A. Espina, C. Trobajo, J.R. García, and J. Rodríguez, J. Incl. Phenom. 15, 215 (1993).

    Article  Google Scholar 

  19. A. Espina, E. Jaimez, M. Súarez, J.R. García, and J. Rodríguez, Thermochim. Acta 210, 263 (1992).

    Article  CAS  Google Scholar 

  20. A. Menéndez, M. Bárcena, E. Jaimez, J. R. García, and J. Rodríguez, Chem. Mater. 5, 1078 (1993).

    Article  Google Scholar 

  21. E. Rodríguez-Castellón, S. Bruque, and A. Rodríguez-García, J. Chem. Soc., Dalton Trans., 213 (1985).

    Google Scholar 

  22. M. L. Rodríguez, M. Súarez, J.R. García, and J. Rodríguez, Solid State Ionics 63–65, 488 (1993).

    Article  Google Scholar 

  23. A. Espina, F. Menéndez, E. Jaimez, S.A. Khainakov, C. Trobajo, J.R. García, and J. Rodríguez, Mater. Res. Bull., in press.

  24. A. Espina, E. Jaimez, S.A. Khainakov, C. Trobajo, J.R. García, and J. Rodríguez, Eur. J. Solid. State Inorg. Chem., in press.

  25. M. Casciola, U. Costantino, L. di Croce, and F. Marmottini, J. Incl. Phenom. 6, 291 (1988).

    Article  CAS  Google Scholar 

  26. T. Kijima, Y. Sekikawa, and S. Veno, J. Chem. Soc., Dalton Trans., 2499 (1982).

    Google Scholar 

  27. D. Behrendt, K. Beneke, and G. Lagaly, Angew. Chem. Int. Ed. Engl. 15, 544 (1976).

    Article  Google Scholar 

  28. D. Leigh and A. Dyer, J. Inorg. Nucl. Chem. 34, 369 (1972).

    Article  CAS  Google Scholar 

  29. S. Yamanaka and M. Koizumi, Clays and Clay Minerals 23, 477 (1975).

    Article  CAS  Google Scholar 

  30. B. K. G. Theng, in The Chemistry of Clay-Organic Reactions, (Hilger, Bristol, 1974).

    Google Scholar 

  31. U. Costantino, M. A. Massucci, A. La Ginestra, A. M. Tarola, and L. Zampa, J. Incl. Phenom. 4, 147 (1986).

    Article  CAS  Google Scholar 

  32. M. Casciola, S. Chieli, U. Costantino, and A. Peraio, Solid State Ionics 46, 53 (1991).

    Article  CAS  Google Scholar 

  33. M. Casciola, U. Costantino, and A. Calevi, Solid State Ionics 61, 254 (1993).

    Google Scholar 

  34. G. Alberti and U. Costantino, in Inclusion Compounds, Vol. 5, Inorganic and Physical Aspects of Inclusion, edited by J.L. Atwood, J.E.D. Davies, and D. D. MacNicol (Oxford University Press, Oxford, 1991).

  35. T. Kijima, Thermochim. Acta 59, 95 (1982).

    Article  CAS  Google Scholar 

  36. A. O. Rajeh and L. Szirtes, J. Therm. Anal. 37, 777 (1991).

    Article  CAS  Google Scholar 

  37. Y. Hasegawa, T. Akimoto, and D. Kojima, J. Incl. Phenom. Mol. Recog. Chem. 20, 12 (1995).

    Google Scholar 

  38. M-H. Herzog-Cance, D.J. Jones, R. El Mejjad, J. Roziére, and J. Tomlinson, J. Chem. Soc. Faraday Trans. 88, 2275 (1992).

    Article  CAS  Google Scholar 

  39. S. K. Shahshooki and L. Szirtes, J. Radional. Nucl. Chem. Lett. 137, 159 (1989).

    Article  Google Scholar 

  40. L. Szirtes and A. O. Rajeh, Solid State Ionics 46, 69 (1991).

    Article  CAS  Google Scholar 

  41. A. Espina, E. Jaimez, S.A. Khainakov, C. Trobajo, J. R. García, and J. Rodríguez, J. Incl. Phenom. Mol. Recog. Chem., in press.

  42. G. Alonzo, N. Bertazzi, P. Cafarelli, C. Ferragina, A. La Ginestra, M. A. Massucci, and P. Patrono, Ann. Chim. 81, 655 (1991).

    CAS  Google Scholar 

  43. R. C. Yeates, S. M. Kuznick, L. B. Lloyd, and E. M. Eyring, J. Inorg. Nucl. Chem. 43, 2355 (1981).

    Article  CAS  Google Scholar 

  44. C. Ferragina, M.A. Massucci, and A. A. G. Tomlinson, J. Chem. Soc., Dalton Trans., 1191 (1990).

    Google Scholar 

  45. C. Ferragina, M. Massucci, A. La Ginestra, P. Patrono, and A. A. G. Tomlinson, J. Chem. Soc., Chem. Commun., 1024 (1984).

    Google Scholar 

  46. C. Ferragina, M. A. Massucci, P. Patrono, A. La Ginestra, and A. A. G. Tomlinson, J. Chem. Soc., Dalton Trans., 265 (1986).

    Google Scholar 

  47. C. FFerragina, M. A. Massucci, P. Patrono, A. La Ginestra, and A. A. G. Tomlinson, J. Chem. Soc., Dalton Trans., 851 (1988).

    Google Scholar 

  48. M. Arfelli, G. Cossu, G. Mattogno, C. Ferragina, and M. A. Massucci, J. Incl. Phenom. Mol. Recog. Chem. 9, 161 (1990).

    Article  CAS  Google Scholar 

  49. C. Ferragina, A. La Ginestra, M. A. Massucci, P. Patrono, and A. A. G. Tomlinson, J. Phys. Chem. 89, 4762 (1985).

    Article  CAS  Google Scholar 

  50. C. Ferragina, A. Frezza, A. La Ginestra, M. A. Massucci, and P. Patrono, in Synthesis of Macroporous Materials, Vol. II, edited by M. L. Occelli and H. E. Robson (Van Nostrand Reinhold, New York, 1992).

  51. T-C. Chang, S-Y. Yeng, and K-J. Chao, J. Phys. Org. Chem. 7, 371 (1994).

    Article  CAS  Google Scholar 

  52. Y-J. Liu and M.G. Kanatzidis, Chem. Mater. 7, 1525 (1995).

    Article  CAS  Google Scholar 

  53. B. Bonnet, R. El Mejjad, M-H. Herzog, D. J. Jones, and J. Rozière, Mater. Sci. Forum 92–93, 177 (1992).

    Article  Google Scholar 

  54. G. L. Rosenthal, J. Caruso, and S. G. Stone, Polyhedron 13, 1311 (1994).

    Article  CAS  Google Scholar 

  55. E. Pillion and M. E. Thompson, Chem. Mater. 3, 777 (1991).

    Article  CAS  Google Scholar 

  56. U. Costantino and F. Marmottini, Mater. Chem. Phys. 35, 193 (1993).

    Article  CAS  Google Scholar 

  57. T. Kijima, K. Sakoh, and M. Machida, J. Chem. Soc., Dalton Trans., 1245 (1996).

    Google Scholar 

  58. G. Alberti, U. Costantino, C. Dionigi, S. Murcia-Mascarós, and R. Vivani, Supramol. Chem 6, 29 (1995).

    Article  CAS  Google Scholar 

  59. G. Alberti, M. Casciola, U. Costantino, and R. Vivani, Adv. Mater. 8, 291 (1996).

    Article  CAS  Google Scholar 

  60. E. Ruiz-Hitzky and B. Casal, in Chemical Reactions in Organic and Inorganic Constrained Systems, edited by R. Setton (Reidel, Dordrecht, 1986).

  61. R. Llavona, J.R. García, M. Súarez, and J. Rodríguez, Thermochim. Acta 86, 281 (1985).

    Article  CAS  Google Scholar 

  62. F. H. Allen, O. Kennard, D. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans. II, S1 (1987).

    Google Scholar 

  63. J. B. Parra-Soto, A. Espina, J.R. García, J. Rodríguez, and J. J. Pis, Stud. Surf. Catal. 87, 467 (1994).

    Article  Google Scholar 

Download references

Acknowledgment

We wish to gratefully acknowledge the financial support of CICYT (Spain), Research Project No. MAT94-0428.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espina, A., Jaimez, E., Khainakov, S.A. et al. Intercalation of nonlinear amines into γ-titanium phosphate. Journal of Materials Research 13, 3304–3314 (1998). https://doi.org/10.1557/JMR.1998.0450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0450

Navigation