Skip to main content
Log in

The oxidative transformation of solid, barium-metal-bearing precursors into monolithic celsian with a retention of shape, dimensions, and relative density

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The conversion of Ba–Al2O3 –Si–SiO2, Ba–Al–Al2O3 –SiO2, and Ba–Sr–Al–Al2O3 –SiO2 precursors into monolithic, monoclinic celsian has been examined. The relative amounts of metal and oxide in each type of precursor were adjusted so that the overall stoichiometry and molar volume were similar to those of the desired product, celsian. Metal + oxide mixtures were mechanically alloyed and then uniaxially pressed to yield 84–92% dense precursor disks. The precursors were converted into celsian by exposure to a series of heat treatments from 300–1500 °C in oxygen-bearing gases. Differences and similarities in the phase evolution of the various precursors are discussed. Celsian disks were produced that retained the precursor shape, dimensions, and relative (% theoretical) density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.P. Bansal and J. A. Setlock, in HITEMP Review-1990: Advanced High Temperature Engine Materials Technology Program, NASA CP 10051, Oct. 1990, pp. 59-1–59-15.

  2. V. S. R. Murthy and M. H. Lewis, Br. Ceram. Trans. J. 89 (5), 173–174 (1990).

    CAS  Google Scholar 

  3. C. H. Drummond III and N. P. Bansal, Ceram. Eng. Sci. Proc. 11 (7–8), 1072–1086 (1990).

    Article  CAS  Google Scholar 

  4. J. J. Buzniak, K. P. D. Lagerlof, and N. P. Bansal, in Advances in Ceramic-Matrix Composites II, Ceram. Trans., edited by J. P. Singh and N. P. Bansal (The American Ceramic Society, Westerville, OH, 1993), Vol. 38, pp. 789–801.

    Google Scholar 

  5. N. P. Bansal, in 17th Conference on Metal Matrix, Carbon, and Ceramic Matrix Composites, Part 2, NASA Conf. Publ. No. 3235, edited by J. D. Buckley (1994).

  6. T. Scanu, J. Guglielmi, and Ph. Colomban, Solid State Ionics 70/71, 109–120 (1994).

    Article  Google Scholar 

  7. M. Starczewski, Prace Inst. Hutniczych 14, 69–74 (1962).

    CAS  Google Scholar 

  8. G. Oehlschlegel and W. Ohnmacht, Glastech. Ber. 48 (11), 232–236 (1975).

    CAS  Google Scholar 

  9. E. M. Levin and H. F. McMurdie, Phase Diagrams for Ceramists, 1975 Supplement (The American Ceramic Society, Columbus, OH, 1975), Fig. 4544.

  10. C. E. Semler and W. R. Foster, J. Am. Ceram. Soc. 53 (11), 595–598 (1970).

    Article  CAS  Google Scholar 

  11. H. C. Lin and W. R. Foster, J. Am. Ceram. Soc. 53 (10), 549–551 (1970).

    Article  CAS  Google Scholar 

  12. W. R. Foster and H. C. Lin, Am. J. Sci 267-A (1, 2), 134–144 (1969).

    Google Scholar 

  13. H. C. Lin and W. R. Foster, Mineral. Mag. 37 (288), 459–465 (1969).

    Article  CAS  Google Scholar 

  14. H. C. Lin and W. R. Foster, Am. Miner. 53, 134–144 (1968).

    CAS  Google Scholar 

  15. R. H. Thomas, J. Am. Ceram. Soc. 33 (2), 35–44 (1950).

    Article  CAS  Google Scholar 

  16. H. Pickup and R. J. Brook, in Engineering with Ceramics 2, Brit. Ceram. Proc, edited by R. Freer, S. Newsam, and G. Syers (The Institute of Ceramics, Shelton, UK, No. 39, 1987), pp. 69–76.

  17. A. Bandyopadhyay, S.W. Quander, P. B. Aswath, D.W. Freitag, K. K. Richardson, and D. L. Hunn, Scripta Metall. Mater. 32 (9), 1417–1422 (1995).

    Article  CAS  Google Scholar 

  18. A. Bandyopadhyay, P. B. Aswath, W. D. Porter, and O. B. Cavin, J. Mater. Res. 10, 1256–1263 (1995).

    Article  CAS  Google Scholar 

  19. A. Bandyopadhyay and P. B. Aswath, J. Mater. Res. 10, 3143–3148 (1995).

    Article  CAS  Google Scholar 

  20. C. J. Hwang and R. A. Newman, Mater. Sci. 31 (1), 150–156 (1996).

    Article  CAS  Google Scholar 

  21. F. Yu, C. R. Ortiz-Longo, and K. W. White, “The Microstructural Characterization of an In-Situ Grown Si3N4 Whisker-Reinforced BAS Glass-Ceramic Matrix Composite,” paper #SVIIP-18-96 presented at the 98th Annual American Ceramic Society Meeting, Indianapolis, IN, April 16, 1996.

  22. W. Wong-Ng, H. McMurdie, B. Paretzkin, C. Hubbard, and A. Dragoo, Powder Diff. 2 (2), 107 (1987).

    Article  Google Scholar 

  23. J. W. Moya Corral and A. Garcia Verduch, Trans. J. Br. Ceram. Soc. 77 (2), 40–44 (1978).

    Google Scholar 

  24. J. A. Zaykoski and I. G. Talmy, Ceram. Eng. Sci. Proc. 15 (9–10), 779–786 (1994).

    Google Scholar 

  25. J. V. Smith and W. L. Brown, Feldspar Mineralogy, Vol. 1 Crystal Structure, Physical, Chemical and Microtextural Properties (Springer-Verlag, Berlin, 1988); Feldspar Mineralogy, Reviews in Mineralogy, Volume 2, edited by P. H. Ribbe (The Mineralogical Society of America, Washington, DC., 1983).

    Google Scholar 

  26. I. G. Talmy and D. A. Haught, 14th Conference on Composite Materials and Structures, NASA Conf. Publ. No. 3097, Part 1 (1990), pp. 227–238.

  27. I. G. Talmy, D. A. Haught, and E. J. Wuchina, in Critical Materials and Processing in a Changing World, Proc. 6th International SAMPEElectronics Conf, edited by A. B. Goldberg, C. A. Harper, M. S. Schroeder, and A. M. Ibrahim, (Society for the Advancement of Material and Process Engineering, Covina, CA, 1992), Vol. 6, pp. 687–698.

  28. E. J. Wuchina and I. G. Talmy, 14th Conference on Composite Materials and Structures, NASA Conf. Publ. No. 3097, Part 1 (1990), pp. 239–250.

  29. R. M. Barrer and D. E. Mainwaring, J. Chem. Soc. (Dalton Trans.) (6), 2296–2305 (1964).

    Google Scholar 

  30. R. M. Barrer and D. E. Mainwaring, J. Chem. Soc. (Dalton Trans.) (12), 1259–1265 (1972).

    Article  Google Scholar 

  31. N. A. Ovramenko, B. Yu Kornilovich, and F. D. Ovcharenko, Dokl. Akad. Nauk SSSR 234 (5), 1097–1099 (1977).

    CAS  Google Scholar 

  32. V. Swamy, A. G. Menon, and G. V. Anantha Iyer, J. Geol. Soc. India 43 (3), 305–310 (1994).

    CAS  Google Scholar 

  33. G. N. Maslennikova, N. P. Fomina, and G. A. Naidenova, Steklo Keram. (9), 17–19 (1973).

    Google Scholar 

  34. J. E. Planz and H. Mu¨ller-Hesse, Ber. Dtsch. Keram. Ges. 40 (3), 191–200 (1963).

    Google Scholar 

  35. G. N. Maslennikova, N. P. Fomina, and F. Ya Kharitonov, Steklo Keram. (12), 21–23 (1974).

    Google Scholar 

  36. K-T. Lee and P. B. Aswath, “Formation Mechanisms of Hexacelsian Barium Aluminosilicate from Mixtures of BaCO3, Al2O3 and SiO2,” paper #B-145-96 presented at the 98th Annual American Ceramic Society Meeting, Indianapolis, IN April 17, 1996.

  37. A. Nordmann, Y-B. Cheng, and B. C. Muddle, J. Euro. Ceram. Soc. 15, 787–794 (1995).

    Article  CAS  Google Scholar 

  38. I. G. Talmy and D. A. Haught, U.S. Patent No. 4,994,419, Feb. 19, 1991.

  39. J. C. Debsikdar and O. S. Sowemimo, J. Mater. Sci. 27, 5320–5324 (1992).

    Article  Google Scholar 

  40. D. Bahat, J. Mater. Sci. 4 (10), 847–854 (1969).

    Article  CAS  Google Scholar 

  41. D. Bahat, J. Mater. Sci. 4 (10), 855–860 (1969).

    Article  CAS  Google Scholar 

  42. N. P. Bansal and M. J. Hyatt, J. Mater. Res. 4, 1257 (1989).

    Article  CAS  Google Scholar 

  43. C. H. Drummond III and N. P. Bansal, Ceram. Eng. Sci. Proc. 11 (7–8), 1072–1086 (1990).

    Article  CAS  Google Scholar 

  44. N. P. Bansal, M. J. Hyatt, and C. H. Drummond III, Ceram. Eng. Sci. Proc. 12, (7–8), 1222–1234 (1991).

    Article  CAS  Google Scholar 

  45. M. Chen, W. E. Lee, and P. F. James, J. Non-Cryst. Solids 130 (3), 322–325 (1991).

    Article  Google Scholar 

  46. M. Chen, W. E. Lee, and P. F. James, J. Non-Cryst. Solids 147–148, 532–536 (1992).

    Google Scholar 

  47. M. Chen, P. F. James, and W. E. Lee, J. Sol-Gel Sci. Technol. 2, 233–237 (1994).

    Google Scholar 

  48. M. Chen, P. F. James, and W. E. Lee, J. Sol-Gel. Sci. Technol. 1, 99–111 (1994).

    Article  Google Scholar 

  49. W. E. Lee, M. Chen, and P. F. James, J. Am. Ceram. Soc. 78 (8), 2180–2186 (1995).

    Google Scholar 

  50. J. C. Debsikdar, J. Non-Cryst. Solids 144 (2, 3), 269–276 (1992).

    Article  CAS  Google Scholar 

  51. J. C. Debsikdar, Ceram. Eng. Sci. Proc. 14, (1–2) 405–415 (1993).

    Article  CAS  Google Scholar 

  52. Y-J. Du, D. Holland, and R. Pittson, Phys. Chem. Glasses 34 (3), 104–108 (1993).

    CAS  Google Scholar 

  53. B. Hoghooghi, J. McKittrick, C. Butler, E. Helsel, and O. Lopez, in Better Ceramics through Chemistry VI, edited by A. K. Cheetham, C. J. Brinker, M.L. Mecartney, and C. Sanchez (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 493–498.

  54. B. Hoghooghi, J. McKittick, C. Butler, and P. Desch, J. Non-Cryst. Solids 170 (3), 303–307 (1994).

    Article  CAS  Google Scholar 

  55. B. Hoghooghi, J. McKittrick, E. Helsel, and O. Lopez, in Proc. of the 5th Int. Symp. on Ceramic Materials and Components for Engines, edited by D. S. Yan, S. R. Fu, and S. X. Shi (World Scientific Press, Singapore, 1995), pp. 640–643.

    Google Scholar 

  56. K. H. Sandhage, U.S. Patent 5,447,291, Sept. 5, 1995.

  57. H. J. Schmutzler and K. H. Sandhage, in Processing and Fabrication of Advanced Materials for High Temperature Applications III, edited by V. A. Ravi, T. S. Srivatsan, and J. J. Moore (TMS, Warrendale, PA, 1994), pp. 113–124.

    Google Scholar 

  58. H. J. Schmutzler and K. H. Sandhage, Ceram. Eng. Sci. Proc. 15 (4), 95–103 (1994).

    Article  CAS  Google Scholar 

  59. H. J. Schmutzler and K. H. Sandhage, Met. Mater. Trans. B 26B, 135–148 (1995).

    Article  CAS  Google Scholar 

  60. S. M. Allameh and K. H. Sandhage, J. Am. Ceram. Soc. 80 (12), 3109–3126 (1997).

    Article  CAS  Google Scholar 

  61. X-D. Zhang, K. H. Sandhage, and H. L. Fraser, J. Am. Ceram. Soc. (in press).

  62. K. H. Sandhage, U.S. Patent #5,318,725, June 7, 1994.

  63. M. M. Anthony and K. H. Sandhage, J. Mater. Res. 8, 2968–2977 (1993).

    Article  Google Scholar 

  64. H. J. Schmutzler, M. M. Antony, and K. H. Sandhage, J. Am. Ceram. Soc. 77 (3), 721–729 (1994).

    Article  CAS  Google Scholar 

  65. H. J. Schmutzler, K. H. Sandhage, and J. C. Nava, J. Am. Ceram. Soc. 79 (6), 1575–1584 (1996).

    Article  CAS  Google Scholar 

  66. G. A. Ward and K. H. Sandhage, J. Am. Ceram. Soc., 80 (6), 1508–1516 (1997).

    Article  CAS  Google Scholar 

  67. Y. Yamada, S. Murasaki, M. Suganuma, and U. Mizutani, Jpn. J. Appl. Phys. 27 (5), L802–L803 (1988).

  68. K. H. Sandhage, L. J. Masure, G. D. Smith, J. M. Poole, and M.G. McKimpson, in Proc. Symp. High Temp. Superconducting Compounds III, TMS Conference, New Orleans, LA, Feb. 18–20, 1991, edited by S. H. Whang, A. DasGupta, and E. Collings (TMS, Warrendale, PA, 1991), pp. 347–362.

    Google Scholar 

  69. K. H. Sandhage, J. Electrochem. Soc. 139 (6), 1662–1671 (1992).

    Article  Google Scholar 

  70. A. Otto, C. Craven, D. Daly, E. R. Podtburg, J. Schreiber, and L. J. Masur, J. Metals 45 (9), 48–52 (1993).

    CAS  Google Scholar 

  71. L. J. Masur, E. R. Podtburg, C. A. Craven, A. Otto, Z. L. Wang, and D. M. Kroeger, J. Metals 46 (12), 28–30 (1994).

    CAS  Google Scholar 

  72. Metals Handbook, 8th ed., edited by T. Lyman, H. E. Boyer, P. M. Unterweiser, J. E. Foster, J. P. Hontas, and H. Lawton (American Society for Metals, Metals Park, Novelty, OH, 1961), Vol. 1.

    Google Scholar 

  73. N. B. Pilling and R. E. Bedworth, J. Inst. Metals 29 (1), 529–581 (1923).

    Google Scholar 

  74. T. E. Leontis and F. N. Rhines, Trans. A.I.M.E. 166, 265–292 (1946).

    Google Scholar 

  75. D. Cubicciotti, J. Am. Chem. Soc. 74, 557–558 (1952).

    Article  CAS  Google Scholar 

  76. M. S. Chandrasekharaiah and J. L. Margrave, J. Electrochem. Soc. 108 (11), 1008–1012 (1961).

    Article  CAS  Google Scholar 

  77. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd ed. (Butterworth, London, 1962), pp. 40, 47, 103, 108–114, 213, 230–240.

    Google Scholar 

  78. M. S. Newkirk, A. W. Urquhart, H. R. Zwicker, and E. Breval, J. Mater. Res. 1, 81–89 (1986).

    Article  CAS  Google Scholar 

  79. M. S. Newkirk, H. D. Lesher, D. R. White, C. R. Kennedy, A. W. Urquhart, and T. D. Claar, Ceram. Eng. Sci. Proc. 8, (7–8), 879–885 (1987).

    Google Scholar 

  80. A. S. Nagelberg, J. Mater. Res. 7, 265–268 (1992).

    Article  CAS  Google Scholar 

  81. M. C. Breslin, U.S. Patent No. 5,214,011, May 25, 1993.

  82. M. C. Breslin, J. Ringnalda, J. Seeger, A. L. Marasco, G. S. Daehn, and H. L. Fraser, Ceram. Eng. Sci. Proc. 15, (7, 8), 104–112 (1994).

    Google Scholar 

  83. M. C. Breslin, J. Ringnalda, L. Xu, M. Fuller, J. Seeger, G. S. Daehn, T. Otani, and H. L. Fraser, Mater. Sci. Eng. A 195, 113–119 (1995).

    Article  Google Scholar 

  84. A. G. Merzhanov and I. P. Borovinskaya, Dokl. Akad. Nauk. SSSR 204, 429–432 (1972).

    Google Scholar 

  85. Z. A. Munir, Bull. Am. Ceram. Soc. 67 (2), 342–349 (1988).

    CAS  Google Scholar 

  86. J. S. Haggerty and Y-M. Chiang, Ceram. Eng. Sci. Proc. 11, 757–794 (1990).

    Google Scholar 

  87. N. Claussen, T. Le, and S. Wu, J. Eur. Ceram. Soc. 5, 29–35 (1989).

    Article  CAS  Google Scholar 

  88. N. Claussen, N. A. Travitsky, and S. Wu, Ceram. Eng. Sci. Proc. 11, (7, 8), 806–820 (1990).

    Google Scholar 

  89. S. Wu and N. Claussen, J. Am. Ceram. Soc. 74 (10), 2460–2463 (1991).

    Article  CAS  Google Scholar 

  90. S. Wu, D. Holz, and N. Claussen, J. Am. Ceram. Soc. 76 (4), 970–980 (1993).

    Article  CAS  Google Scholar 

  91. S. Wu, S.P. Gaus, H.M. Chan, H.S. Caram, and M.P. Harmer, pp. 209–218 in Advanced Synthesis and Processing of Composites and Advanced Ceramics, Ceram. Trans. The American Ceramic Society, Westerville, OH, 1995), Vol. 56, pp. 209–218.

    Google Scholar 

  92. J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diagrams 5 (1), 74–84 (1984).

    Article  CAS  Google Scholar 

  93. Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM, Metals Park, OH, 1986), Vol. 1, pp. 92, 93, 164–167, 429.

  94. G. Oehlschlegel and W. Ohnmacht, Glastech. Ber. 48 (11), 232–236 (1975).

    CAS  Google Scholar 

  95. F. J. Klug, S. Prochazka, and R. H. Doremus, Ceram. Trans. 6, 15–43 (1990).

    CAS  Google Scholar 

  96. I. A. Aksay and J. A. Pask, J. Am. Ceram. Soc. 58 (11–12), 507–512 (1975).

    Article  CAS  Google Scholar 

  97. R. F. Davis and J. A. Pask, J. Am. Ceram. Soc. 55 (10), 525 (1972).

  98. S. Kimura, E. Bannai, and I. Shindo, Mater. Res. Bull. 17 (2), 209–215 (1982).

    Article  CAS  Google Scholar 

  99. JCPDS Cards: #01-1291 for Be; #20-0164 for BeO; #35-0821 for Mg; #45-0946 for MgO; #23-0430 for Ca; 37-1497 for CaO; #03-0865 for CaO2; #15-0306 for Sr; #06-0520 for SrO; #07-0234 for SrO2; #6-0235 for Ba; #22-1056 for BaO; #7-233 for BaO2; #4-0791 for Al; #43-1484 for a–Al2O3; #27-1402 for Si; #39-1425 for SiO2 (cristobalite); #33-1161 for SiO2 (quartz); #06-0696 for Fe; #25-1402 for Fe2O3; #06-0615 for FeO; #04-0836 for Cu; #05-0667 for Cu2O; #05-0682 for Ti; #24-1276 for TiO2 (rutile) #05-0665 for Zr; #36-420 for ZrO2; #08-0056 for Ce; #34-0394 for CeO2; #5-0378 for BaCO3; #26-1403 for Ba2SiO4; #26-1402 for b–BaSiO3; #26-176 for β–BaSi2O5; #17-306 for BaAl2O4; #31-1336 for β–SrAl2O4; #12-725 for orthorhombic (pseudo-hexagonal) BaAl2Si2O8; #28-125 for hexagonal BaAl2Si2O8; #38-1450 for monoclinic BaAl2Si2O8; #38-1452 for monoclinic Ba0.5Sr0.5Al2Si2O8; #22-511 for (Ba, Sr)SiO3; #20-143 for BaSrSi2O6; #39-1256 for Sr2SiO4.

  100. S. Ito, S. Banno, K. Suzuki, and M. Inagaki, Z. Phys. Chem. 107 (1), 53–56 (1977).

    Article  CAS  Google Scholar 

  101. J. O. A. Paschoal, H. Kleykamp, and F. Thuemmler, J. Nucl. Mater. 151 (1), 10–21 (1987).

    Article  CAS  Google Scholar 

  102. W. C. Butterman and W. R. Foster, Am. Mineral. 52, 880–885 (1967).

    CAS  Google Scholar 

  103. R. Citak, H. J. Schmutzler, and K. H. Sandhage, unpublished work conducted at Ohio State University.

  104. J. E. Planz and H. Muller-Hesse, Ber. Dtsch. Keram. Ges. 38, 440–450 (1961).

    Google Scholar 

  105. J. M. Fields, Jr., P. S. Dear, and J. J. Brown, Jr., J. Am. Ceram. Soc. 55 (12), 585–588 (1972).

    Article  CAS  Google Scholar 

  106. Y. G. Shteinberg, V. N. Gerasimov, and V. N. Gubar, J. Appl. Chem. USSR 40, 1378–1381 (1967).

    Google Scholar 

  107. I. Barin, Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1989), Vols. 1–2.

    Google Scholar 

  108. D. Bahat, J. Mater. Sci. 5 (9), 805–810 (1970).

    Article  CAS  Google Scholar 

  109. C. Liu, S. Komarneni, and R. Roy, J. Am. Ceram. Soc. 78 (9), 2521–2526 (1995).

    Article  CAS  Google Scholar 

  110. I. G. Talmy and J. A. Zaykoski, in 17th Conference on Metal Matrix, Carbon, and Ceramic Matrix Composites, Part 2, NASA Conf. Publ. No. 3235, edited by J. D. Buckley (1994), pp. 759–771.

  111. M. C. Guillem Villar, C. Guillem Monzonis, and J. Alacon Navarro, Trans. J. Br. Ceram. Soc. 82, 69–72 (1983).

    CAS  Google Scholar 

  112. M. C. Guillem Villar, C. Guillem Monzonis, and P. Escribano Lopez, Trans. J. Br. Ceram. Soc. 82, 197–200 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allameh, S.M., Sandhage, K.H. The oxidative transformation of solid, barium-metal-bearing precursors into monolithic celsian with a retention of shape, dimensions, and relative density. Journal of Materials Research 13, 1271–1285 (1998). https://doi.org/10.1557/JMR.1998.0182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0182

Navigation