Skip to main content
Log in

High pressure compaction of nanosize ceramic powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-density ceramic materials from nanosize ceramic powders were produced by high pressure under nearly hydrostatic environment up to 5.6 GPa, on a special configuration in a toroidal-type apparatus, at room temperature. Attempts to use a common solid pressure transmitting medium, as NaCl, resulted in cracked samples. Lead and indium, which have an extremely low shear strength, proved to be the suitable choices as a pressure-transmitting medium to compact these ceramic materials, in order to obtain high-density samples. Transparent amorphous SiO2-gel and translucent γ−Al2O3 samples, in bulk, with volumes about 40 mm3, hard and crack-free were obtained. Densities over 90% of full density for the γ−Al2O3 samples and over 80% for the compacted SiO2-gel samples were obtained. In addition, from the density-pressure curve, the yield strength (σ) for γ−Al2O3 was estimated, for the first time, as 2.6 GPa. Vickers microhardness values were in the range of 5.7 GPa for the γ−Al2O3 samples, and 4.0 GPa for the SiO2-gel samples, under loads of 50 g. An important and practical application of these results is the possibility of producing bulk γ−Al2O3, a new alumina material, which was not possible to prepare before due to the conversion to a phase during the normal sintering process. Additionally, specially for SiO2-gel, a very important application of this study is the possibility of incorporation of organic substances in an inorganic matrix, using high pressure at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Karch, R. Birringer, and H. Gleiter, Nature (London) 330, 556 (1987).

    Article  CAS  Google Scholar 

  2. R. A. Andrievskii, O. M. Grebtsova, E. P. Domashneva, I. A. Kiyanskii, E. N. Kurkin, V. E. Perel’man, V. I. Sinitsyn, O. D. Torbova, and V. I. Torbov, Phys. Dokl. 38. 308 (1993).

  3. V. Provenzano, N. P. Louat, M. A. Iman, and K. Sadanada, Nanostructured Mater. 1, 89 (1992).

    Article  CAS  Google Scholar 

  4. J. A. Eastman, Y. X. Liao, A. Narayanasam, and R. W. Siegel, in Processing Science of Advanced Ceramics, edited by I. A. Aksay, G. L. McVay, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), p. 255.

  5. R. W. Siegel, Nanostructured Mater. 3, 1 (1993).

    Article  CAS  Google Scholar 

  6. A. O. Kunrath Neto, Study of Ceramic Sintering by High-Pressure (in Portuguese), Master Thesis-UFRGS/PPGEMM (1990).

  7. A. Pechenik, G. J. Piermarini, and S. C. Danforth, Nanostructured Mater. 2, 479 (1993).

    Article  CAS  Google Scholar 

  8. M. R. Gallas, B. Hockey, A. Pechenik, and G. J. Piermarini, J. Am. Ceram. Soc. 77, 2107 (1994).

    Article  CAS  Google Scholar 

  9. D. L. Woods and E. M. Rabinovich, Appl. Spectrosc. 43, 263 (1989).

    Article  Google Scholar 

  10. W. L. Vasconcelos, R. T. DeHoff, and L. L. Hench, J. Non-Cryst. Solids 121, 124 (1990).

    Article  CAS  Google Scholar 

  11. C. J. Brinker and G. S. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).

    Google Scholar 

  12. S. Sakka, K. Aoki, H. Kozuka, and J. Yamaguchi, J. Mater. Sci. 28, 4607 (1993).

    Article  CAS  Google Scholar 

  13. M. Wakatsuki, K. Ichinose, and T. Aoki, Jpn. J. Appl. Phys. 1, 578 (1972).

    Article  Google Scholar 

  14. L. G. Khvostantsev, High Temp.–High Press. 16, 165 (1984).

    Google Scholar 

  15. W. F. Sherman and A. A. Stadtmuller, Experimental Techniques in High-Pressure Research (John Wiley & Sons Ltd., New York, 1987).

    Google Scholar 

  16. J. F. Baumard and P. Coupelle, J. Mater. Sci. Lett. 13, 93 (1994).

    Article  CAS  Google Scholar 

  17. E. Arzt, Acta Metall. 30, 1883 (1982).

    Article  CAS  Google Scholar 

  18. A. S. Helle, K. E. Easterling, and M. F. Ashby, Acta Metall. 33, 2163 (1985).

    Article  CAS  Google Scholar 

  19. R. W. Heckel, Trans. Metall. Soc. AIME 221, 1001 (1961).

    Google Scholar 

  20. K. Lark-Horowitz and V. A. Johnson, in Methods of Experimental Physics, edited by M. Metzger (Academic Press, New York, 1959).

  21. K. Yonagisawa, M. Nishioka, K. Yoku, and N. Yamasaki, J. Mater. Sci. Lett. 12, 1073 (1993).

    Article  Google Scholar 

  22. J. Y. Ying, J. B. Benziger, and A. Navrotsky, J. Am. Ceram. Soc. 76, 2571 (1993).

    Article  CAS  Google Scholar 

  23. M. R. Gallas, T. M. H. Costa, E. V. Benvenutti, A. R. Rosa, and J. A. H. da Jornada, High Pressure Drying and Compaction of Nanosize Silica Gel, First National Symposium of Glass, Águas de Lindóia, São Paulo, 1995.

  24. T. M. H. Costa, M. R. Gallas, E. V. Benvenutti, and J. A. H. da Jornada, unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallas, M.R., Rosa, A.R., Costa, T.H. et al. High pressure compaction of nanosize ceramic powders. Journal of Materials Research 12, 764–768 (1997). https://doi.org/10.1557/JMR.1997.0111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0111

Navigation