Skip to main content
Log in

Development of novel microstructures in zirconia-toughened alumina using rapid solidification and shock compaction

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A rapidly solidified alumina-zirconia eutectic material containing nanocrystalline t-ZrO2 has been synthesized. When heated, the microstructure contained a mixture of t-ZrO2 and m-ZrO2, each of which can facilitate toughening of the composite. Dynamic shock compaction was used to accelerate densification of the material, producing crack-free specimens with high green densities. After sintering to densities measuring ∼95% of theoretical, the shock-compacted specimens fabricated with unstabilized alumina-zirconia were extensively microcracked due to an overabundance of the m-ZrO2 phase. Experiments employing Y2O3 as a chemical stabilizer have shown that the extent of the phase transformation can be controlled, and the microstructure that developed in the stabilized material contained an acceptable level of the microcrack generating m-ZrO2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Garvie and R. H. Hannink, Nature (London) 228, 703 (1975).

    Article  Google Scholar 

  2. J. Wang and R. Stevens, J. Mater. Sci. 24, 3421 (1989).

    Article  CAS  Google Scholar 

  3. D. J. Green, R. H. J. Hannink, and M. V. Swain, in Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989), p. 17.

  4. R. Stevens and P. A. Evans, Trans. Br. Ceram. Soc. 83, 28 (1984).

    CAS  Google Scholar 

  5. M. Rühle, A. G. Evans, R. M. McMeeking, P. G. Charalambides, and J.W. Hutchinson, Acta Metall. 35, 2701 (1987).

    Article  Google Scholar 

  6. R. C. Garvie and M. V. Swain, J. Mater. Sci. 20, 1193 (1985).

    Article  CAS  Google Scholar 

  7. H. Ruh and A. G. Evans, J. Am. Ceram. Soc. 66, 328 (1983).

    Article  Google Scholar 

  8. N. Claussen, J. Steeb, and R. F. Pabst, J. Am. Ceram. Soc. 56, 559 (1977).

    CAS  Google Scholar 

  9. R. M. McMeeking and A.G. Evans, J. Am. Ceram. Soc. 65, 242 (1981).

    Article  Google Scholar 

  10. F. F. Lange, J. Mater. Sci. 17, 235 (1982).

    Article  CAS  Google Scholar 

  11. P. F. Becher, Acta Metall. 34, 1885 (1986).

    Article  CAS  Google Scholar 

  12. M. Rühle, N. Claussen, and A. Heuer, J. Am. Ceram. Soc. 69, 195 (1986).

    Article  Google Scholar 

  13. K. T. Faber, in Advances in Ceramics, vol. 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Rühle, and A. H. Heuer (The American Ceramic Society, Westerville, OH, 1984), p. 293.

    Google Scholar 

  14. N. Claussen, J. Am. Ceram. Soc. 59, 49 (1976).

    Article  CAS  Google Scholar 

  15. D. J. Green, J. Am. Ceram. Soc. 65, 610 (1982).

    Article  CAS  Google Scholar 

  16. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).

    Book  Google Scholar 

  17. L. A. Jacobson and J. McKittrick, Mater. Sci. Eng. R11, 355 (1994).

    Article  Google Scholar 

  18. N. Claussen, G. Lindemann, and G. Petzow, Mater. Sci. Monogr. 16, 489 (1983).

    CAS  Google Scholar 

  19. J. McKittrick, G. Kalonji, and T. Ando, J. Non-Cryst. Solids 94, 163 (1987).

    Article  CAS  Google Scholar 

  20. J. Homeny and J.J. Nick, Mat. Sci. Eng. A127, 123 (1990).

    Article  CAS  Google Scholar 

  21. D. M. Owen, Ph.D. Thesis, University of California, San Diego (1993).

    Google Scholar 

  22. L. A. Xue and R. J. Brook, J. Am. Ceram. Soc. 72, 341 (1989).

    Article  CAS  Google Scholar 

  23. F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 72, 341 (1989).

    Article  Google Scholar 

  24. R. L. Coble, J. Appl. Phys. 32, 793 (1961).

    Article  CAS  Google Scholar 

  25. W. J. Nellis, Shock Compression of Solids: A Tutorial, UCRL-JC-103176 (1990).

    Google Scholar 

  26. O. R. Bergmann and J.A. Barrington, J. Am. Ceram. Soc. 49, 503 (1966).

    Article  Google Scholar 

  27. D. J. Benson, W. J. Nellis, and J.A. Moriarity, in Shock-Wave and High-Strain-Rate Phenomena in Materials, edited by M. A. Meyers, L. E. Murr, and K. P. Staudhammer (Marcel Dekker, New York, 1992), p. 981.

    Google Scholar 

  28. B. Morosin, R. A. Graham, and J. R. Hellmann, in Shock Waves in Condensed Matter, edited by J.R. Asay, R. A. Graham, and G. K. Straub (Elsevier, Amsterdam, The Netherlands, 1984), p. 383.

    Google Scholar 

  29. E. K. Beauchamp, M.J. Carr, and R. A. Graham, J. Am. Ceram. Soc. 68, 696 (1985).

    Article  CAS  Google Scholar 

  30. R. A. Prümmer and G. Ziegler, Powder Metall. Int. 9, 11 (1977).

    Google Scholar 

  31. M. A. Meyers and S.L. Wang, Acta Metall. 36, 925 (1988).

    Article  CAS  Google Scholar 

  32. W. H. Gourdin, Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by J.H. Crawford, Jr., Y. Chen, and W. A. Sibley (Mater. Res. Soc. Symp. Proc. 24, Elsevier Science Publishing, New York, 1984), p. 307.

  33. C. L. Hoenig and C. S. Yust, Am. Ceram. Soc. Bull. 60, 1175 (1981).

    CAS  Google Scholar 

  34. M. Bengisu, O. Inal, and J.R. Hellman, J. Am. Ceram. Soc. 73, 346 (1990).

    Article  CAS  Google Scholar 

  35. B. Tunaboylu, J. McKittrick, and W. J. Nellis, J. Am. Ceram. Soc. 77, 1605 (1994).

    Article  CAS  Google Scholar 

  36. R. C. Garvie and P.S. Nicholson, J. Am. Ceram. Soc. 55, 303 (1972).

    Article  CAS  Google Scholar 

  37. D. Balzar, J. Appl. Crystallogr. 25, 559 (1992).

    Article  CAS  Google Scholar 

  38. A. A. Griffith, Philos. Trans. R. Soc. London A221, 163 (1920).

    Google Scholar 

  39. M.A. Meyers, S.S. Shang, and K. Hokamoto, in Shock Waves in Materials Science, edited by A. B. Sawaoka (Springer-Verlag, Tokyo, 1993), p. 145.

    Book  Google Scholar 

  40. J. McKittrick, B. Tunaboylu, and J. Katz, J. Mater. Sci. 29, 2119–2125 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freim, J., McKittrick, J., Nellis, W.J. et al. Development of novel microstructures in zirconia-toughened alumina using rapid solidification and shock compaction. Journal of Materials Research 11, 110–119 (1996). https://doi.org/10.1557/JMR.1996.0014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0014

Navigation