Skip to main content
Log in

Stable thin film resistors using double layer structure

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly stable bilayer thin film resistors, which consist of an underlying layer of tantalum nitride and of a capping layer of ruthenium oxide, were developed by taking advantage of the desired characteristics of two different materials in a single system. The resistors fabricated in such a way were highly stable under power loading or thermal cycling. Resistors with one digit temperature coefficient of resistance (TCR) could be easily controlled by the layer thickness ratio of the tantalum nitride to the ruthenium oxide and the ex situ annealing temperature or duration. Auger electron spectroscopy depth profile on the thin films indicates that the ruthenium oxide layer is well defined for the as-deposited form. Nevertheless, interdiffusion takes place after thermal treatment of the bilayer which is used to tune the temperature coefficient of resistance and to stabilize the resistance of the resistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Pike and C.H. Seager, J. Appl. Phys. 48, 5152 (1977).

    Article  CAS  Google Scholar 

  2. T. M. Chen, S.F. Su, and D. Smith, Solid State Electron. 25, 821 (1982).

    Article  CAS  Google Scholar 

  3. E. Gofuku, T. Ogama, and H. Takasago, J. Appl. Phys. 66, 6126 (1989).

    Article  CAS  Google Scholar 

  4. J. Zelenka, V. Chudoba, J. Rehak, and K. Rohacek, Thin Solid Films 200, 239 (1991).

    Article  CAS  Google Scholar 

  5. W. Gawalek, Thin Solid Films 116, 205 (1984).

    Article  CAS  Google Scholar 

  6. C.L. Au, W. A. Anderson, D.A. Schmitz, J. C. Flassayer, and F.M. Collins, J. Mater. Res. 5, 1224 (1990).

    Article  CAS  Google Scholar 

  7. G.P. Ferraris, Thin Solid Films 38, 21 (1976).

    Article  CAS  Google Scholar 

  8. W. J. Ostrander, J. Verhoef, and L. W. Bos, IEEE Trans. Parts, Hybrids, Packag. 9, 155 (1973).

    Article  Google Scholar 

  9. E. Kolawa, F.C.T. So, E.T.S. Pan, and M.A. Nicolet, Appl. Phys. Lett. 50, 854 (1987).

    Article  CAS  Google Scholar 

  10. L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, Appl. Phys. Lett. 50, 1879 (1987).

    Article  CAS  Google Scholar 

  11. M. L. Green, M. E. Gross, L. E. Papa, K.J. Schones, and D. Brasen, J. Electrochem. Soc. 132, 2677 (1985).

    Article  CAS  Google Scholar 

  12. R.G. Vadimsky, R.P. Frankenthal, and D.E. Thompson, J. Electrochem. Soc. 126, 2017 (1979).

    Article  CAS  Google Scholar 

  13. S. Saito and K. Kuramasu, Jpn. J. Appl. Phys. 31, 135 (1992).

    Article  CAS  Google Scholar 

  14. Q. X. Jia, Z. Q. Shi, K. L. Jiao, W. A. Anderson, and F. M. Collins, Thin Solid Films 196, 29 (1991).

    Article  CAS  Google Scholar 

  15. Q.X. Jia, K.L. Jiao, W.A. Anderson, and F.M. Collins, Mater. Sci. Eng. B18, 220 (1993).

    Article  CAS  Google Scholar 

  16. Q.X. Jia, K.L. Jiao, W.A. Anderson, and F.M. Collins, Mater. Sci. Eng. B20, 301 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Q.X., Lee, H.J., Ma, E. et al. Stable thin film resistors using double layer structure. Journal of Materials Research 10, 1523–1528 (1995). https://doi.org/10.1557/JMR.1995.1523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1523

Navigation