Skip to main content
Log in

Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report

  • Materials Reports
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Panel was charged with assessing the present scientific understanding of the size-dependent physical and chemical properties of clusters, the methods of synthesis of macroscopic amounts of size-selected clusters with desired properties, and most importantly, the possibility of their controlled assembly into new materials with novel properties. The Panel was composed of both academic and industrial scientists from the physics, chemistry, and materials science communities, and met in January 1988.

In materials (insulators, semiconductors, and metals) with strong chemical bonding, there is extensive spatial delocalization of valence electrons, and therefore the bulk physical properties which depend upon these electrons develop only gradually with cluster size. Recent research using supersonic-jet, gas-aggregation, colloidal, and chemical-synthetic methods indeed clearly establishes that intermediate size clusters have novel and hybrid properties, between the molecular and bulk solid-state limits. A scientific understanding of these transitions in properties has only been partially achieved, and the Panel believes that this interdisciplinary area of science is at the very heart of the basic nature of materials. In Sec. V (Future Challenges and Opportunities), a series of basic questions for future research are detailed. Each question has an obvious impact on our potential ability to create new materials.

Present methods for the synthesis of useful amounts of size-selected clusters, with surface chemical properties purposefully controlled and/or modified, are almost nonexistent, and these fundamentally limit our ability to explore the assembly of clusters into potentially novel materials. While elegant spectroscopic and chemisorption studies of size-selected clusters have been carried out using molecular-beam technologies, there are no demonstrated methods for recovery and accumulation of such samples. Within the past year, the first reports of the chemical synthesis of clusters with surfaces chemically modified have been reported for limited classes of materials. Apparatus for the accumulation and consolidation of nanophase materials have been developed, and the first promising studies of their physical properties are appearing. In both the chemical and nanophase synthesis areas, clusters with a distribution of sizes and shapes are being studied. Progress on macroscopic synthetic methods for size-selected clusters of controlled surface properties is the most important immediate goal recognized by the Panel. Simultaneous improvement in physical characterization will be necessary to guide synthesis research.

Assuming such progress will occur, the Panel suggests that self-assembly of clusters into new elemental polymorphs and new types of nanoscale heterogeneous materials offers an area of intriguing technological promise. The electrical and optical properties of such heterogeneous materials could be tailored in very specific ways. Such ideas are quite speculative at this time; their implementation critically depends upon controlled modification of cluster surfaces, and upon development of characterization and theoretical tools to guide experiments.

The Panel concluded that a number of genuinely novel ideas had been enunciated, and that in its opinion some would surely lead to exciting new science and important new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Physics and Chemistry of Small Clusters, edited by P. Jena, B. K. Rao, and S. N. Khanna (Plenum Press, New York, 1987).

  2. L. E. Bras, J. Phys. Chem. 90, 2555 (1986).

    Article  Google Scholar 

  3. H. Gleiter, in Deformation of Polycrystals: Mechanisms and Micro-structures, edited by N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt (Ris0 National Laboratory, Roskilde, Denmark, 1981), p. 15.

    Google Scholar 

  4. R. Birringer, U. Herr, and H. Gleiter, Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).

    Google Scholar 

  5. R. W. Siegel and H. Hahn, in Current Trends in the Physics of Materials, edited by M. Yussouff (World Scientific Publ. Co., Singapore, 1987), p. 403.

    Google Scholar 

  6. M. Carey Lea, Am. J. Sci. 37, 479 (1889).

    Google Scholar 

  7. J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).

    Article  Google Scholar 

  8. R. M. Wilenzick, D. C. Russell, R. H. Morriss, and S. W. Marshall, J. Chem. Phys. 47, 533 (1967).

    Article  CAS  Google Scholar 

  9. S. T. Lin, M. T. Franklin, and K. J. Klabunde, Langmuir 2, 259 (1986).

    Article  CAS  Google Scholar 

  10. R. Rossetti, J. L. Ellison, H. M. Gibson, and L. E. Brus, J. Chem. Phys. 80, 4464 (1984).

    Article  CAS  Google Scholar 

  11. M. Meyer, C. Walberg, K. Kurihara, and J. H. Fendler, J. Chem. Soc. Chem. Commun., 90 (1984).

  12. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem. Phys. 87, 7315 (1987).

    Article  CAS  Google Scholar 

  13. N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, J. Appl. Phys. 61, 5399 (1987).

    Article  CAS  Google Scholar 

  14. A. Fojtik, H. Weller, U. Koch, and A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 969 (1984).

    Article  CAS  Google Scholar 

  15. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, and L. E. Brus, J. Am. Chem. Soc. 110, 3046 (1988).

    Article  CAS  Google Scholar 

  16. R. H. Holm, Ace. Chem. Res. 10, 427 (1977).

    Article  CAS  Google Scholar 

  17. Boon K. Teo, K. Keating, and Y-H. Kao, J. Am. Chem. Soc. 109, 3494 (1987).

    Article  CAS  Google Scholar 

  18. Y. Wang and N. Herron, J. Phys. Chem. 91, 257 (1987).

    Article  CAS  Google Scholar 

  19. N. Herron, Y. Wang, M. Eddy, G. Stucky, D. E. Cox, K. Moller, and T. Bein, J. Am. Chem. Soc. 111, 530 (1989).

    Article  CAS  Google Scholar 

  20. R. Uyeda, J. Cryst. Growth 24, 69 (1974).

    Article  Google Scholar 

  21. C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).

    Article  CAS  Google Scholar 

  22. H. Abe, W. Schulze, and B. Tesche, Chem. Phys. 47, 95 (1980).

    Article  CAS  Google Scholar 

  23. K. Sattler, J. Mühlbach, and E. Recknagel, Phys. Rev. Lett. 45, 821 (1980).

    Article  CAS  Google Scholar 

  24. R. S. Bowles, J. J. Kolstad, J. M. Calo, and R. P. Andres, Surf. Sci. 106, 117 (1981).

    Article  CAS  Google Scholar 

  25. E. Choi and R. P. Andres, in Physics and Chemistry of Small Clusters, edited by P. Jena, B. K. Rao, and S. N. Khanna (Plenum Press, New York, 1987), p. 61.

    Chapter  Google Scholar 

  26. M. E. Tremblay, B. W. Smith, M. B. Long, and J. D. Winefordner, Spectrosc. Lett. 20, 311 (1987).

    Article  CAS  Google Scholar 

  27. Y. Liu, Q-L. Zhang, F. K. Tittel, R. F. Curl, and R. E. Smalley, J. Chem. Phys. 85, 7434 (1986).

    Article  CAS  Google Scholar 

  28. M. D. Morse, Chem. Rev. 86, 1049 (1986).

    Article  CAS  Google Scholar 

  29. K. LaiHing, R. G. Wheeler, W. L. Wilson, and M. A. Duncan, J. Chem. Phys. 87, 3401 (1987).

    Article  CAS  Google Scholar 

  30. E. A. Rohlfing, D. M. Cox, R. Petkovic-Luton, and A. Kaldor, J. Phys. Chem, 88, 6227 (1984).

    Article  CAS  Google Scholar 

  31. K. LaiHing, P. Y. Cheng, and M. A. Duncan, J. Phys. Chem. 91, 6521 (1987).

    Article  CAS  Google Scholar 

  32. W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra, J. Am. Ceram. Soc. 65, 324, 330 (1982).

  33. G. W. Rice and R. L. Woodin, J. Am. Ceram. Soc. 71, C181 (1988).

    Article  CAS  Google Scholar 

  34. G. W. Rice and R. L. Woodin, in Applications of Lasers to Industrial Chemistry, Proc. SPIE, 458 (1984).

  35. R. A. Fiato, G. W. Rice, and S. L. Soled, U. S. Patents 4659681, 4668647.

  36. M. M. Kappes, M. Schär, P. Radi, and E. Schumacher, J. Chem. Phys. 84, 1863 (1986).

    Article  CAS  Google Scholar 

  37. P. Fayet and L. Wöste, Z. Phys. D 3, 177 (1986).

    Google Scholar 

  38. R. B. Wright, J. K. Bates, and D. M. Gruen, Inorg. Chem. 17, 2275 (1978).

    Article  CAS  Google Scholar 

  39. D. Leopold, J. Ho, and W. C. Lineberger, J. Chem. Phys. 86, 1715 (1987).

    Article  CAS  Google Scholar 

  40. M. L. Mandich, V. E. Bondybey, and W. D. Reents, J. Chem. Phys. 86, 4245 (1987).

    Article  CAS  Google Scholar 

  41. G. Benassayag, J. Orloff, and L. W. Swanson, J. Physique, Colloq. C7, Suppl. no. 11, 389 (1986).

    Google Scholar 

  42. A. Bahasadri, Ph.D. Thesis, Electrical Engineering Dept., Drexel University (1987).

  43. T. Takagi, Z. Phys. D 3, 272 (1986).

    Google Scholar 

  44. I. Yamada, C. J. Palmstron, E. Kennedy, J. W. Mayer, H. Inokawa, and T. Takagi, Mater. Res. Soc. Symp. Proc. 37, 401 (1985).

    Article  CAS  Google Scholar 

  45. T. Ina, M. Hanai, H. Ito, and Y. Minowa, Proc. 5th Int. Conf. Ion and Plasma Assisted Techniques (CEP Consultanta Ltd., Edinburgh, 1985), p. 16.

    Google Scholar 

  46. T. Ina, unpublished results.

  47. W. Knauer, J. Appl. Phys. 62, 841 (1987).

    Article  CAS  Google Scholar 

  48. R. P. Andres, unpublished results.

  49. R. Birringer, H. Gleiter, H-P. Klein, and P. Marquardt, Phys. Lett. A 102, 365 (1984).

    Article  Google Scholar 

  50. X. Zhu, R. Birringer, U. Herr, and H. Gleiter, Phys. Rev. B 35, 9085 (1987).

    Article  Google Scholar 

  51. T. Haubold, R. Birringer, B. Lengeler, and H. Gleiter, unpublished results.

  52. U. Herr, J. Jing, R. Birringer, U. Gonser, and H. Gleiter, Appl. Phys. Lett. 50, 472 (1987).

    Article  CAS  Google Scholar 

  53. H. E. Schaefer and R. Wurschum, Phys. Lett. A 119, 370 (1987); H. E. Schaefer, R. Wurschum, M. Scheytt, R. Birringer, and H. Gleiter, Mater. Sci. Forum 15–18, 955 (1987).

    Article  Google Scholar 

  54. T. Mütschele and R. Kirchheim, Scripta Metall. 21, 135, 1101 (1987).

    Article  Google Scholar 

  55. J. Rupp and R. Birringer, Phys. Rev. B 36, 7888 (1987).

    Article  Google Scholar 

  56. D. Korn, A. Morsch, R. Birringer, W. Arnold, and H. Gleiter, J. Physique, Colloq. C5 49, 769 (1988).

    Google Scholar 

  57. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).

    Article  CAS  Google Scholar 

  58. R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, J. Mater. Res. 3, 1367 (1988). 59R. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).

    Article  CAS  Google Scholar 

  59. Z. Li, S. Ramasamy, H. Hahn, and R. W. Siegel, Mater. Letters 6, 195 (1988).

    Article  CAS  Google Scholar 

  60. H-J. Höfler, H. Hahn, and R. S. Averback, unpublished results.

    Article  CAS  Google Scholar 

  61. K. Raghavachari and V. Logovimsky, Phys. Rev. Lett. 55, 2853 (1985).

  62. K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988).

    Article  CAS  Google Scholar 

  63. M. H. McAdon and W. A. Goddard, J. Non-Cryst. Solids 75, 149 (1985).

    Article  CAS  Google Scholar 

  64. M. H. McAdon and W. A. Goddard, J. Phys. Chem. 91, 2607 (1987).

    Article  CAS  Google Scholar 

  65. S. G. Louie, in Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter, edited by J. Devreese and P. Van Camp (Plenum Press, New York, 1985), p. 335.

    Article  CAS  Google Scholar 

  66. Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Plenum Press, New York, 1983); several articles in this book are of interest.

    Chapter  Google Scholar 

  67. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

  68. P. Ballone, W. Andreoni, R. Car, and M. Parrinello, Phys. Rev. Lett. 60, 271 (1988).

    Article  CAS  Google Scholar 

  69. D. J. Chadi, Phys. Rev. Lett. 41, 1062 (1978).

    Article  CAS  Google Scholar 

  70. D. Tomanek and M. Schluter, Phys. Rev. Lett. 56, 1055 (1986).

    Article  CAS  Google Scholar 

  71. J. R. Chelikowsky and R. Redwing, Solid State Commun. 64, 843 (1987).

    Article  CAS  Google Scholar 

  72. W. A. de Heer, W. D. Knight, M. Y. Chou, and M. L. Cohen, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1987), Vol. 40, p. 94.

    Article  CAS  Google Scholar 

  73. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).

  74. M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418 (1985).

    Article  CAS  Google Scholar 

  75. M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).

    Article  CAS  Google Scholar 

  76. M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 58, 1551 (1987).

    Article  Google Scholar 

  77. Ph. Buffet and J-P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  78. H. Gleiter, unpublished results.

    Article  Google Scholar 

  79. P. Baeri, G. Foti, J. M. Poate, and A. G. Cullis, Phys. Rev. Lett. 45, 2036 (1980).

  80. G. L. Olson, Mater. Res. Soc. Symp. Proc. 35, 24 (1984).

    Article  CAS  Google Scholar 

  81. P. S. Peercy and M. O. Thompson, Mater. Res. Soc. Symp. Proc. 35, 53 (1984).

    Google Scholar 

  82. J. C. Phillips, J. Chem. Phys. 86, 619 (1986).

    Article  Google Scholar 

  83. J. L. Martins, J. Battet, and R. Car, Phys. Rev. B 31, 1804 (1985).

    CAS  Google Scholar 

  84. J. Horváth, R. Birringer, and H. Gleiter, Solid State Commun. 62, 319 (1987).

    Article  Google Scholar 

  85. The work of Hilliard and co-workers has most recently been reviewed by A. L. Greer and F. Spaepen, in Synthetic Modulated Structures, edited by L. L. Chang and B. C. Giessen (Academic Press, New York, 1985), p. 419.

    Article  CAS  Google Scholar 

  86. R. C. Cammarata, Scripta Metall. 20, 479 (1986).

  87. A. Purdes, Ph.D. Thesis, Northwestern University (1976).

    Article  CAS  Google Scholar 

  88. G. Henein, Ph.D. Thesis, Northwestern University (1979).

  89. T. B. Wu, J. Appl. Phys. 53, 5265 (1982).

  90. A. F. Jankowski and T. Tsakalakos, J. Phys. F: Met. Phys. 15, 1279 (1985).

    Article  Google Scholar 

  91. A. Banerjea and J. R. Smith, Phys. Rev. B 35, 5413 (1987).

    Article  Google Scholar 

  92. J. Bevk, Ann. Rev. Mater. Sci. 13, 319 (1983).

    Article  Google Scholar 

  93. J. S. Koehler, Phys. Rev. B 2, 547 (1970).

    Article  CAS  Google Scholar 

  94. U. Helmersson, S. Todorova, S. A. Barnett, J-E. Sundgren, L. C.

    Article  Google Scholar 

  95. Markert, and J. E. Greene, J. Appl. Phys. 62, 481 (1987).

    Article  CAS  Google Scholar 

  96. R. Birringer, H. Hahn, H. Höfler, J. Karch, and H. Gleiter, in Diffusion Processes in High Technology Materials, edited by D. Gupta, A. D. Romig, Jr., and M. A. Dayananda (Trans. Tech. Publ., Aedermannsdorf, 1988), p. 17.

  97. L. Brus, IEEE J. Quantum Electron QE-22, 1909 (1986).

    Article  CAS  Google Scholar 

  98. A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, J. Chem. Phys. 89, 4001 (1988).

    Article  CAS  Google Scholar 

  99. L. Brus, New. J. of Chem. 11, 123 (1987).

    CAS  Google Scholar 

  100. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem. Phys. 87, 7315 (1987).

    Article  CAS  Google Scholar 

  101. T. Dannhauser, M. O’Neil, K. Johansson, D. Whitten, and G. McLendon, J. Phys. Chem. 90, 6074 (1986).

    Article  CAS  Google Scholar 

  102. R. K. Jain and R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).

    Article  CAS  Google Scholar 

  103. T. Roussignol, D. E. Ricard, J. Lukasik, and C. Flytzanis, J. Opt. Soc. Am. B4, 5 (1987).

    Article  Google Scholar 

  104. G. R. Olbright, N. Teyghambarian, and S. W. Koch, Opt. Lett. 12, 413 (1987).

    Article  CAS  Google Scholar 

  105. Y. Wang and W. Mahler, Opt. Comm. 61, 233 (1987).

    Article  CAS  Google Scholar 

  106. E. S. Hilinski, P. A. Lucas, and Y. Wang, J. Chem. Phys. 89, 3435 (1988).

    Article  CAS  Google Scholar 

  107. T. Takagahara and E. Hanamura, Phys. Rev. Lett. 56, 2533 (1986).

    Article  CAS  Google Scholar 

  108. D. S. Chemla and D. A. B. Miller, Opt. Lett. 11, 522 (1986).

    Article  CAS  Google Scholar 

  109. L. Banyai and S. W. Koch, Phys. Rev. Lett. 57, 2722 (1986).

    Article  CAS  Google Scholar 

  110. D. Fornasiero and F. Grieser, J. Chem. Phys. 87, 3213 (1987).

    Article  CAS  Google Scholar 

  111. J. P. Callmar and L. S. Hegeders, Principles and Applications of Organotransition Metal Chemistry (University Science Books, Mill Valley, CA, 1980).

    Google Scholar 

  112. A. Kaldor, D. M. Cox, and M. R. Zakin, in Molecular Surface Chemistry: Reactions of Gas-Phase Metal Clusters, Advances in Chemical Physics, edited by I. Prigogine (Wiley & Sons, New York, 1988), Vol. 70, part 2, p. 211.

  113. B. C. Gates, L. Guczi, and H. Knozingen, Metal Clusters in Catalysis (Elsevier, New York, 1986).

  114. J. R. Anderson and M. Bondard, Catalysis: Science and Technology (Springer-Verlag, Heidelberg, 1984).

    Book  Google Scholar 

  115. M. R. Zakin, R. O. Brickman, D. M. Cox, and A. Kaldor, J. Chem. Phys. 88, 6605 (1988).

    Article  CAS  Google Scholar 

  116. J. M. Alford, F. D. Weiss, R. T. Laaksonen, and R. E. Smalley, J. Phys. Chem. 90, 4480 (1986).

    Article  CAS  Google Scholar 

  117. J. L. Elkind, F. D. Weiss, J. M. Alford, R. T. Laaksonen, and R. E. Smalley, J. Chem. Phys. 88, 5215 (1988).

    Article  CAS  Google Scholar 

  118. R. J. St. Pierre and M. A. El-Sayed, J. Phys. Chem. 91, 763 (1987).

    Article  Google Scholar 

  119. S. C. Richtsmeier, E. K. Parks, K. Liu, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 3659 (1985).

    Article  CAS  Google Scholar 

  120. Y. Hamrick, S. Taylor, G. W. Lemire, Z-W. Fu, J-C. Shui, and M. D. Morse, J. Chem. Phys. 88, 4095 (1988).

    Article  CAS  Google Scholar 

  121. E. K. Parks, G. Nieman, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 88, 6260 (1988).

    Article  CAS  Google Scholar 

  122. E. K. Parks, K. Liu, S. C. Richtsmeier, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 5470 (1985).

    Article  CAS  Google Scholar 

  123. K. Liu, E. K. Parks, S. C. Richtsmeier, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 83, 2882; erratum 83, 5353 (1985).

  124. E. K. Parks, G. C. Nieman, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 86, 1066 (1987).

    Article  CAS  Google Scholar 

  125. E. K. Parks, R. Miranda, G. C. Nieman, and S. J. Riley, unpublished results.

  126. E. K. Parks, B. H. Weiller, P. S. Bechthold, W. F. Hoffman, G. C. Nieman, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 88, 1622 (1988).

    Article  CAS  Google Scholar 

  127. A. Faibis, E. P. Kanter, L. M. Tack, E. Bakke, and B. Zabransky, J. Phys. Chem. 91, 6445 (1987).

    Article  CAS  Google Scholar 

  128. Z. Vager, E. P. Kanter, G. Both, P. J. Cooney, A. Fabis, W. Koenig, B. Zabransky, and D. Zajfman, Phys. Rev. Lett. 57, 2793 (1986).

    Article  CAS  Google Scholar 

  129. L. R. Wallenberg, J. O. Bovin, A. K. Petford-Long, and D. J. Smith, Ultramicroscopy 20, 71 (1986).

    Article  CAS  Google Scholar 

  130. L. D. Marks and D. J. Smith, J. Microscopy, 130, 249 (1982).

    Article  Google Scholar 

  131. S. Ogawa, Y. Tanishiro, K. Takayanagi, and K. Yagi, J. Vac. Sci. Technol. A5, 1735 (1987).

    Article  Google Scholar 

  132. Ultramicroscopy 20, No. 1/2 (1986).

  133. E. B. Prestridge and D. J. C. Yates, Nature 234, 345 (1971); E. B. Prestridge, G. H. Via, and J. H. Sinfelt, J. Catal. 50, 115 (1977).

    Article  CAS  Google Scholar 

  134. R. T. K. Baker and P. S. Harris, J. Sci. Instrum. 5, 793 (1970); R. T. K. Baker, E. B. Prestridge, and G. B. McVicker, J. Catal. 89, 422 (1984).

    Article  Google Scholar 

  135. D. W. Abraham, K. Sattler, E. Ganz, H. J. Mamin, R. E. Thomsen, and J. Clarke, Appl. Phys. Lett. 49, 853 (1986).

    Article  CAS  Google Scholar 

  136. A. M. Baro, A. Bartolome, L. Vazquez, N. Garcia, R. Reifenberger, E. Choi, and R. P. Andres, Appl. Phys. Lett. 51, 1594 (1987).

    Article  CAS  Google Scholar 

  137. T. Castro, Y. Z. Li, E. Choi, R. P. Andres, and R. Reifenberger, in Proc. 35th National Symposium of the American Vacuum Society (Atlanta, GA; October 1988) (to be published).

  138. A. Yokozeki and G. D. Stein, J. Appl. Phys. 49, 2224 (1978).

    Article  CAS  Google Scholar 

  139. J. Farges, M. F. deFeraudy, B. Raoult, and G. Torchet, J. Chem. Phys. 78, 5067 (1983); J. Farges, M. F. deFeraudy, B. Raoult, and G. Torchet, in Large Finite Systems, edited by J. Jortner, A. Pulman, and B. Pulman (Reidel, Dordrecht, 1987), p. 113.

    Article  CAS  Google Scholar 

  140. D. W. Schaeffer, Mater. Res. Soc. Symp. Proc. 79, 47 (1987).

    Article  Google Scholar 

  141. J. E. Martin and A. J. Hurd, J. Appl. Cryst. 20, 61 (1987).

    Article  CAS  Google Scholar 

  142. R. S. Stein, Mater. Res. Soc. Symp. Proc. 79, 3 (1987).

    Article  CAS  Google Scholar 

  143. W. Weltner, Jr. and R. J. Van Zee, Ann. Rev. Phys. Chem. 35, 291 (1984).

    Article  CAS  Google Scholar 

  144. K. Kernisant, G. A. Thompson, and D. M. Lindsay, J. Chem. Phys. 82, 4739 (1985).

    Article  CAS  Google Scholar 

  145. J. A. Howard, K. F. Preston, R. Sutcliffe, and B. Mile, J. Phys. Chem. 87, 536 (1983).

    Article  CAS  Google Scholar 

  146. R. J. Van Zee, R. F. Ferrante, K. J. Zeringue, W. Weltner, Jr., and D. W. Ewing, J. Chem. Phys. 88, 3465 (1983).

    Google Scholar 

  147. L. B. Knight, Jr., R. W. Woodward, R. J. Van Zee, and W. Weltner, Jr., J. Chem. Phys. 79, 5820 (1983).

    Article  CAS  Google Scholar 

  148. P. A. Montano, W. Schulze, B. Tesche, G. K. Shenoy, and T. T. Morrison, Phys. Rev. B 30, 672 (1984).

    Article  Google Scholar 

  149. Metal Clusters, edited by M. Moskovits (Wiley & Sons, New York, 1987), p. 185.

  150. M. D. Morse, J. B. Hopkins, P. R. R. Langridge-Smith, and R. E. Smalley, J. Chem. Phys. 79, 5316 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andres, R.P., Averback, R.S., Brown, W.L. et al. Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report. Journal of Materials Research 4, 704–736 (1989). https://doi.org/10.1557/JMR.1989.0704

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.0704

Navigation