Skip to main content
Log in

Growth of tetragonal BaTiO3 single crystal fibers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

With the increasing use of optical fibers in the telecommunication network, there is need for fiber geometry compatible optical devices such as optical amplifiers, switches, couplers, and isolators. These active devices are based on field-dependent material properties, such as electrooptic and magneto-optic effects, which are stronger in single crystal than in amorphous materials. Single crystal fibers can be grown by the laser heated pedestal growth (LHPG) technique. In this paper we report the growth of single crystal fibers of ferroelectric barium titanate from sintered ceramic rods of stoichiometric barium titanate. Barium titanate is one of the most extensively investigated ferroelectric materials. However, its growth from stoichiometric melt always results in its hexagonal nonferroelectric phase. Using LHPG, single crystal strontium titanate seed, and sintered ceramic barium titanate rods, we have succeeded in growing single crystal fibers (∼ 100 μ m diameter) of pure barium titanate with tetragonal (ferroelectric) crystal structure. This paper discusses growth and characterization of these fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977), p. 560.

    Google Scholar 

  2. Reference 1, pp. 459–466.

    Google Scholar 

  3. C. Lee, J. Yahia, and J. L. Brebner, Phys. Rev. B 3, 2525 (1971).

    Article  Google Scholar 

  4. C. A. Burrus and J. Stone, Appl. Phys. Lett. 26, 318 (1975).

    Article  CAS  Google Scholar 

  5. F. Jona and G. Shirane, Ferroelectric Crystals (Macmillan, New York, 1962), pp. 108–203.

    Google Scholar 

  6. J. P. Remeika, J. Am. Chem. Soc. 76, 940 (1954).

    CAS  Google Scholar 

  7. V. Belruss, J. Kalnajs, A. Linz, and R. C. Forweiler, Mat. Res. Bull. 6, 899 (1971).

    CAS  Google Scholar 

  8. D. E. Rose and R. Roy, J. Am. Ceram. Soc. 38, 102 (1955).

    Google Scholar 

  9. K. Nassau and A. M. Broyer, J. Am. Ceram. Soc. 45, 474 (1962).

    CAS  Google Scholar 

  10. S. Ueda, Mat. Res. Bull. 9, 469 (1974).

    CAS  Google Scholar 

  11. F. Brown and W. H. Todt, J. Appl. Phys. 35, 1594 (1964).

    CAS  Google Scholar 

  12. D. B. Gasson and B. Cockayne, J. Mat. Sci. 5, 100 (1970).

    CAS  Google Scholar 

  13. J. S. Haggerty, W. P. Menashi, and J. F. Wenckus, U.S. Patent Nos. 3,944,640 (1976) and 4,012,213 (1977).

  14. M. A. Saifi (unpublished).

  15. M. M. Fejer, R. L. Byer, R. Feigelson, and W. Kway, SPIE Proc. 320, 50 (1982).

    CAS  Google Scholar 

  16. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, Rev. Sci. Instrum. 55, 1791 (1984).

    CAS  Google Scholar 

  17. T. Surek and S. R. Corriel, J. Crystal Growth 37, 253 (1977).

    CAS  Google Scholar 

  18. J. R. Carruthers and M. Grasso, J. Crystal Growth 13–14, 611 (1972).

    Google Scholar 

  19. W. G. Pfann and D. W. Hagelbarger, J. Appl. Phys. 27, 12 (1956).

    Google Scholar 

  20. J. A. Basmajian and R. C. DeVries, J. Am. Ceram. Soc. 40, 373 (1957).

    CAS  Google Scholar 

  21. H. E. Swanson and R. K. Fuyat, Natl. Bur. Stand. (U.S). Circ. 539, (3) 45 (1954).

    Google Scholar 

  22. V. C. S. Prasad and E. C. Subbarao, Appl. Phys. Lett. 22, 424 (1973).

    CAS  Google Scholar 

  23. P. N. Forsbergh, Phys. Rev. 76, 1187 (1949).

    CAS  Google Scholar 

  24. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971), p. 96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saifi, M., Dubois, B., Vogel, E.M. et al. Growth of tetragonal BaTiO3 single crystal fibers. Journal of Materials Research 1, 452–456 (1986). https://doi.org/10.1557/JMR.1986.0452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0452

Navigation