Skip to main content

Advertisement

Log in

The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Since the development of the light microscope in the 16th century, optical device size and performance have been limited by diffraction. Optoelectronic devices of today are much bigger than the smallest electronic devices for this reason. Achieving control of light—material interactions for photonic device applications at the nanoscale requires structures that guide electromagnetic energy with subwavelength-scale mode confinement. By converting the optical mode into nonradiating surface plasmons, electromagnetic energy can be guided in structures with lateral dimensions of less than 10% of the free-space wavelength. A variety of methods—including electron-beam lithography and self-assembly—have been used to construct both particle and planar plasmon waveguides. Recent experimental studies have confirmed the strongly coupled collective plasmonic modes of metallic nanostructures. In plasmon waveguides consisting of closely spaced silver rods, electromagnetic energy transport over distances of 0.5 m has been observed. Moreover, numerical simulations suggest the possibility of multi-centimeter plasmon propagation in thin metallic stripes. Thus, there appears to be no fundamental scaling limit to the size and density of photonic devices, and ongoing work is aimed at identifying important device performance criteria in the subwavelength size regime. Ultimately, it may be possible to design an entire class of subwavelength-scale optoelectronic components (waveguides, sources, detectors, modulators) that could form the building blocks of an optical device technology—a technology scalable to molecular dimensions, with potential imaging, spectroscopy, and interconnection applications in computing, communications, and chemical/biological detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  2. M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, Opt. Lett. 23 (1998) p. 1331.

    Google Scholar 

  3. M.L. Brongersma, J.W. Hartman, and H.A. Atwater, Phys. Rev. B 62 (2000) p. R16356.

    Google Scholar 

  4. B. Lamprecht, G. Schider, R.T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, and F.R. Aussenegg, Phys. Rev. Lett. 84 (2000) p. 4721.

    Google Scholar 

  5. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, and H.A. Atwater, Adv. Mater. 13 (2001) p. 1501.

    Google Scholar 

  6. G. Mie, Ann. Phys. 25 (1908) p. 377.

    Google Scholar 

  7. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  8. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  9. S. Linden, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 86 (2001) p. 4688.

    Google Scholar 

  10. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, Phys. Rev. Lett. 82 (1999) p. 2590.

    Google Scholar 

  11. S.A. Maier, M.L. Brongersma, P.G. Kik, and H.A. Atwater, Phys. Rev. B 65 193408 (2002).

    Google Scholar 

  12. S.A. Maier, P.G. Kik, and H.A. Atwater, Appl. Phys. Lett. 81 (2002) p. 1714.

    Google Scholar 

  13. S.A. Maier, P.G. Kik, and H.A. Atwater, Phys. Rev. B 67 205402 (2003).

    Google Scholar 

  14. D.R. Smith and N. Kroll, Phys. Rev. Lett. 85 (2000) p. 2933.

    Google Scholar 

  15. J.B. Pendry, Phys. Rev. Lett. 85 (2001) p. 3966.

    Google Scholar 

  16. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha, Nature Mater. 2 (2003) p. 229.

    Google Scholar 

  17. F.J. García-Vidal and J.B. Pendry, Phys. Rev. Lett. 77 (1996) p. 1163.

    Google Scholar 

  18. H. Xu, J. Aizpurua, M. Käll, and P. Apell, Phys. Rev. E 62 (2000) p. 4318.

    Google Scholar 

  19. A.D. McFarland and R.P. Van Duyne, Nano Lett. 3 (2003) p. 1057.

    Google Scholar 

  20. D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, Nano Lett. 4 (2004) p. 153.

    Google Scholar 

  21. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B 3 (1986) p. 1647.

    Google Scholar 

  22. Y. Hamanaka, K. Fukata, A. Nakamura, L.M. Liz-Marzán, and P. Mulvaney, Appl. Phys. Lett 84 (2004) p. 4938.

    Google Scholar 

  23. R.J. Gehr and R.W. Boyd, Chem. Mater. 8 (1996) p. 1807.

    Google Scholar 

  24. Y. Shen and P.N. Prasad, Appl. Phys. B 74 (2002) p. 641.

    Google Scholar 

  25. D. Prot, D.B. Stout, J. Lafait, N. Pinçon, B. Palpant, and S. Debrus, J. Opt. A 4 (2002) p. S99.

    Google Scholar 

  26. J.J. Penninkhof, A. Polman, L.A. Sweatlock, S.A. Maier, H.A. Atwater, A.M. Vredenberg, and B.J. Kooi, Appl. Phys. Lett. 83 (2003) p. 4137.

    Google Scholar 

  27. L.A. Sweatlock, S.A. Maier, H.A. Atwater, J.J. Penninkhof, and A. Polman, Phys. Rev. B (2004) accepted.

  28. K.L. Kliewer and R. Fuchs, Phys. Rev. 153 (1967) p. 2.

    Google Scholar 

  29. E.N. Economou, Phys. Rev. 182 (1969) p. 2.

    Google Scholar 

  30. D. Sarid, Phys. Rev. Lett. 47 (1981) p. 1927; A.E. Craig, G.A. Oldon, and D. Sarid, Opt. Lett. 8 (1983) p. 380.

    Google Scholar 

  31. J.J. Burke, G.I. Stegeman, and T. Tamir, Phys. Rev. B 33 (1985) p. 8.

    Google Scholar 

  32. P. Berini, Optics Letters 24 (1999) p. 15; P. Berini, Phys. Rev. B 61 (2000) p. 15; P. Berini, Optics Express 7 (2000) p. 10; P. Berini, Phys. Rev. B 63 (2001) 12.

    Google Scholar 

  33. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, and A. Polman, Phys. Rev. B (2005) accepted.

  34. E. Palik, G. Ghosh, Handbook of Optical Constants of Solids II (Academic Press, New York 1991).

    Google Scholar 

  35. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman (2005) unpublished.

  36. Figure adapted from L.A. Sweatlock, S.A. Maier, H.A. Atwater, J.J. Penninknof et al., “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phis. Rev. B(2005) accepted.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atwater, H.A., Maier, S., Polman, A. et al. The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld. MRS Bulletin 30, 385–389 (2005). https://doi.org/10.1557/mrs2005.277

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.277

Keywords

Navigation