Skip to main content
Log in

Nitrogen-vacancy centers close to surfaces

  • Nitrogen-vacancy centers: Physics and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Defects in solid-state systems are responsible for much of what we take for granted in modern society, with applications ranging from electronics and lasers, to metallic alloys with tailored properties, and the unique characteristics of gemstones. As we enter the age of quantum technology, solid-state defects are also having their say, with substantial research focused on using their properties for fundamental tests of quantum mechanics, storage of quantum information, and investigations of quantum decoherence. Two of the most exciting prospects of quantum technology are the creation of computers that take advantage of quantum rather than classical laws to outperform current devices, and the realization of highly sensitive magnetometers limited only by quantum uncertainty. In pursuit of these two goals, many proposals and proof-of-principle experiments have been performed in the solid-state, which required location of defects very close to the host crystal’s surface. This article reviews recent work on creation of nitrogen-vacancy centers near the diamond surface and experiments toward the realization of these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R. Kolesov, B. Grotz, G. Balasubramanian, R.J. Stöhr, A.A.L. Nicolet, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Phys. 5, 470 (2009).

    Google Scholar 

  2. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J.R. Rabeau, N. Stavrias, A.D. Greentree, S. Prawer, J. Meijer, J. Twamley, P.R. Hemmer, J. Wrachtrup, Nat. Phys. 2, 408 (2006).

    Google Scholar 

  3. D.M. Toyli, C.D. Weis, G.D. Fuchs, T. Schenkel, D.D. Awschalom, Nano Lett. 10, 3168 (2010).

    Google Scholar 

  4. J.S. Hodges, L. Li, M. Lu, E.H. Chen, M.E. Trusheim, S. Allegri, X. Yao, O. Gaathon, H. Bakhru, D. Englund, New J. Phys. 14, 093004 (2012).

    Google Scholar 

  5. S. Pezzagna, D. Rogalla, H.-W. Becker, I. Jakobi, F. Dolde, B. Naydenov, J. Wrachtrup, F. Jelezko, C. Trautmann, J. Meijer, Phys. Status Solidi A 208, 2017 (2011).

    Google Scholar 

  6. S. Steinert, F. Dolde, P. Neumann, A. Aird, B. Naydenov, G. Balasubramanian, F. Jelezko, J. Wrachtrup, Rev. Sci. Instrum. 81, 043705 (2010).

    Google Scholar 

  7. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004).

    Google Scholar 

  8. F. Jelezko, J. Wrachtrup, J. Phys. Condens. Matter 16, R1089 (2008).

    Google Scholar 

  9. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4, 810 (2008).

    Google Scholar 

  10. C.L. Degen, Appl. Phys. Lett. 92, 243111 (2008).

    Google Scholar 

  11. J.H. Cole, L.C.L. Hollenberg, Nanotechnology 20, 495401 (2009).

    Google Scholar 

  12. K. Ohno, F.J. Heremans, L.C. Bassett, B.A. Myers, D.M. Toyli, A.C. Bleszynski Jayich, C.J. Palmstrøm, D.D. Awschalom, Appl. Phys. Lett. 101, 082413 (2012).

    Google Scholar 

  13. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 87, 261909 (2005).

    Google Scholar 

  14. T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Lončar, Nat. Nanotechnol. 5, 195 (2010).

    Google Scholar 

  15. B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon, P.R. Hemmer, M. Lončar, Diamond Relat. Mater. 19, 621 (2010).

    Google Scholar 

  16. B.J.M. Hausmann, T.M. Babinec, J.T. Choy, J.S. Hodges, S. Hong, I. Bulu A. Yacoby, M.D. Lukin, M. Lončar, New J. Phys. 13, 045004 (2011).

    Google Scholar 

  17. J.R. Rabeau, P. Reichart, G. Tamanyan, D.N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, J. Wrachtrup, Appl. Phys. Lett. 88, 023113 (2006).

    Google Scholar 

  18. B. Naydenov, F. Reinhard, A. Lämmle, V. Richter, R. Kalish, U.F.S. D’Haenens-Johansson, M. Newton, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 97, 242511 (2010).

    Google Scholar 

  19. J. Meijer, S. Pezzagna, T. Vogel, B. Burchard, H.H. Bukow, I.W. Rangelow, Y. Sarov, H. Wiggers, I. Plümel, F. Jelezko, J. Wrachtrup, F. Schmidt-Kaler, W. Schnitzler, K. Singer, Appl. Phys. A 91, 567 (2008).

    Google Scholar 

  20. P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin, R.L. Walsworth, M. Loncar, A. Yacoby, Nat. Nanotechnol. 7, 320 (2012).

    Google Scholar 

  21. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nature 455, 648 (2008).

    Google Scholar 

  22. Y.Y. Hui, Y. R. Chang, N. Mohan, T.S. Lim, Y.Y. Chen, H.C. Chang, J. Phys. Chem. A 115, 1878 (2011).

    Google Scholar 

  23. N. Mohan, C.-S. Chen, H.-H. Hsieh, Y.-C. Wu, H.-C. Chang, Nano Lett. 10, 3692 (2010).

    Google Scholar 

  24. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Nat. Nanotechnol. 5, 345 (2010).

    Google Scholar 

  25. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P.R. Hemmer, F. Jelezko, J. Wrachtrup, ACS Nano 3, 1959 (2009).

    Google Scholar 

  26. V.R. Horowitz B.J. Alemán, D.J. Christle, A.N. Cleland, D.D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 109, 13493 (2012).

    Google Scholar 

  27. M. Barth, S. Schietinger, T. Schröder, T. Aichele, O. Benson, J. Lumin. 130, 1628 (2010).

    Google Scholar 

  28. S. Schietinger, T. Schröder, O. Benson, Nano Lett. 8, 3911 (2008).

    Google Scholar 

  29. A. Härtl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, M. Stutzmann, Nat. Mater. 3, 736 (2004).

    Google Scholar 

  30. A. Krueger, D. Lang, Adv. Funct. Mater. 22, 890 (2012).

    Google Scholar 

  31. T. Gaebel, M. Domhan, C. Wittmann, I. Popa, F. Jelezko, J. Rabeau, A. Greentree, S. Prawer, E. Trajkov, P.R. Hemmer, J. Wrachtrup, Appl. Phys. B 82, 243 (2006).

    Google Scholar 

  32. N.B. Manson, J.P. Harrison, Diamond Relat. Mater. 14, 1705 (2005).

    Google Scholar 

  33. G. Waldherr, J. Beck, M. Steiner, P. Neumann, A. Gali, Th. Frauenheim, F. Jelezko, J. Wrachtrup, Phys. Rev. Lett. 106, 157601 (2011).

    Google Scholar 

  34. C. Santori, P.E. Barclay, K.-M.C. Fu, R.G. Beausoleil, Phys. Rev. B 79, 125313 (2009).

    Google Scholar 

  35. K.M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil, Appl. Phys. Lett. 96, 121907 (2010).

    Google Scholar 

  36. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.-C. Chang, V. Jacques, J.-F. Roch, Phys. Rev. B 82, 115449 (2010).

    Google Scholar 

  37. J. Martin, W. Grebner, W. Sigle, R. Wannemacher, J. Lumin. 8384, 493 (1999).

    Google Scholar 

  38. Y. Mita, Phys. Rev. B 53, 11360 (1996).

    Google Scholar 

  39. M.I. Landstrass, K.V. Ravi, Appl. Phys. Lett. 55, 975 (1989).

    Google Scholar 

  40. A. Stacey, D.A. Simpson, T.J. Karle, B.C. Gibson, V.M. Acosta, Z. Huang K.M.C. Fu, C. Santori, R.G. Beausoleil, L.P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A.D. Greentree, S. Prawer, Adv. Mater. 24, 3333 (2012).

    Google Scholar 

  41. I. Aharonovich, J.C. Lee, A.P. Magyar, B.B. Buckley, C.G. Yale, D.D. Awschalom, E.L. Hu, Adv. Mater. 24, Op54 (2012).

    Google Scholar 

  42. A. Stacey, T.J. Karle, L.P. McGuinness, B.C. Gibson, K. Ganesan, S. Tomljenovic-Hanic, A.D. Greentree, A. Hoffman, R.G. Beausoleil, S. Prawer, Appl. Phys. Lett. 100, 071902 (2012).

    Google Scholar 

  43. J.A. Garrido, S. Nowy, A. Härtl, M. Stutzmann, Langmuir 24, 3897 (2008).

    Google Scholar 

  44. M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Phys. Rev. B 83, 081304 (2011).

    Google Scholar 

  45. F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Phys. Rev. Lett. 85, 3472 (2000).

    Google Scholar 

  46. I. Kratochvílová, A. Taylor, A. Kovalenko, F. Fendrych, V. Řezáčová, V. Petrák, S. Záliš, J. Šebera, M. Nesládek, Mater. Res. Soc. Symp. Proc. 1203, J03 (2010).

    Google Scholar 

  47. V. Petráková, M. Nesládek, A. Taylor, F. Fendrych, P. Cígler, M. Ledvina, J. Vacík, J. Štursa, J. Kučka, Phys. Status Solidi A 208, 2051 (2011).

    Google Scholar 

  48. V. Petráková, A. Taylor, I. Kratochvílová, F. Fendrych, J. Vacík, J. Kučka, J. Štursa, P. Cígler, M. Ledvina, A. Fišerová, P. Kneppo, M. Nesládek, Adv. Funct. Mater. 22, 812 (2012).

    Google Scholar 

  49. B. Grotz, M.V. Hauf, M. Dankerl, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Nat. Commun. 3, 729 (2012).

    Google Scholar 

  50. S. Pezzagna, D. Wildanger, P. Mazarov, A.D. Wieck, Y. Sarov, I. Rangelow, B. Naydenov, F. Jelezko, S.W. Hell, J. Meijer, Small 6, 2117 (2010).

    Google Scholar 

  51. M. Dankerl, A. Lippert, S. Birner, E.U. Stützel, M. Stutzmann, J.A. Garrido Phys. Rev. Lett. 106, 196103 (2011).

    Google Scholar 

  52. J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 107, 8513 (2010).

    Google Scholar 

  53. A. Gali, Phys. Rev. B 79, 235210 (2009).

    Google Scholar 

  54. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Gurudev Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nature 455, 644 (2008).

    Google Scholar 

  55. L.T. Hall, G.C.G. Beart, E.A. Thomas, D.A. Simpson, L.P. McGuinness, J.H. Cole, J.H. Manton, R.E. Scholten, F. Jelezko, J. Wrachtrup, S. Petrou, L.C.L. Hollenberg, Sci. Rep. 2, 401 (2012).

    Google Scholar 

  56. B. Grotz, J. Beck, P. Neumann, B. Naydenov, R. Reuter, F. Reinhard, F. Jelezko, J. Wrachtrup, D. Schweinfurth, B. Sarkar, P. Hemmer, New J. Phys. 13, 055004 (2011).

    Google Scholar 

  57. Y.-Y. Chen, H. Shu, Y. Kuo, Y.-K. Tzeng, H.-C. Chang, Diamond Relat. Mater. 20, 803 (2011).

    Google Scholar 

  58. J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer F. Reinhard, J. Wrachtrup, ACS Nano 5, 7893 (2011).

    Google Scholar 

  59. J.-P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet, Nanotechnology 20, 235602 (2009).

    Google Scholar 

  60. L.P. McGuiness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, C.L. Hollenberg, Nat. Nanotechnol. 6, 358(2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wrachtrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wrachtrup, J., Jelezko, F., Grotz, B. et al. Nitrogen-vacancy centers close to surfaces. MRS Bulletin 38, 149–154 (2013). https://doi.org/10.1557/mrs.2013.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.22

Navigation