Skip to main content
Log in

Thickness effect on thermally induced phase transformations in sputtered titanium-nickel shape-memory films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of the film thickness on the phase transformations encountered in sputtered titanium-nickel (TiNi) shape-memory films due to thermal cycling in the temperature range of −150 to 150 °C was examined in the context of electrical resistivity (ER) measurements. A hysteresis in the ER response was observed for film thickness greater than 300 nm. This phenomenon is characteristic of shape-memory materials and is attributed to the rhombohedral (R) phase produced during cooling from the high-temperature cubic austenite phase to the low-temperature monoclinic martensite phase. The decrease of the TiNi film thickness below 300 nm resulted in a smaller ER hysteresis, leading eventually to its disappearance for film thickness less than ∼50 nm. The results indicate that spatial constraints introduced by the film surface and film/substrate interface generate a resistance force, which prevents lattice distortion and twinning. The inhibition of these mechanisms, which control self-accommodation R-phase transformation, leads to the suppression and eventual disappearance of the shape memory effect for film thickness less than ∼100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Buehler, J.V. Gilfrich, and R.C. Wiley: Effect of lowtemperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34, 1475 (1963).

    Article  CAS  Google Scholar 

  2. F.E. Wang, W.J. Buehler, and S.J. Pickart: Crystal structure and a unique “martensitic” transition of TiNi. J. Appl. Phys. 36, 3232 (1965).

    Article  CAS  Google Scholar 

  3. F.E. Wang: Transformation twinning of B2(CsCl)-type structure based on an inhomogeneous shear model. J. Appl. Phys. 43, 92 (1972).

    Article  CAS  Google Scholar 

  4. F.E. Wang, S.J. Pickart, and H.A. Alperin: Mechanism of the TiNi martensitic transformation and the crystal structures of TiNi-II and TiNi-III phases. J. Appl. Phys. 43, 97 (1972).

    Article  CAS  Google Scholar 

  5. Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka: Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal x-ray diffraction method. Acta Metall. 33, 2049 (1985).

    Article  CAS  Google Scholar 

  6. S. Miyazaki, K. Otsuka, and C.M. Wayman: The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys. I. Self-accommodation. Acta Metall. 37, 1873 (1989).

    Article  CAS  Google Scholar 

  7. S. Miyazaki, K. Otsuka, and C.M. Wayman: The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys. II. Variant coalescence and shape recovery. Acta Metall. 37, 1885 (1989).

    Article  CAS  Google Scholar 

  8. C.M. Wayman and T.W. Duerig: In Engineering Aspects of Shape Memory Alloys, edited by T.W. Duerig, K.N. Melton, D. Stockel, and C.M. Wayman (Butterworth-Heinemann, London, U.K., 1990), pp. 3–20.

  9. D.P. Dautovich and G.R. Purdy: Phase transformations in TiNi. Can. Metall. Quart. 4, 129 (1965).

    Article  CAS  Google Scholar 

  10. W. Cai, Y. Murakami, and K. Otsuka: Study of R-phase transformation in a Ti-50.7at.%Ni alloy by in situ transmission electron microscopy observations. Mater. Sci. Eng. A 273–275, 186 (1999).

    Article  Google Scholar 

  11. S. Miyazaki and K. Otsuka: Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy. Philos. Mag. A 50, 393 (1984).

    Article  CAS  Google Scholar 

  12. S. Miyazaki and K. Otsuka: Deformation and transition behavior associated with the R-phase in Ti–Ni alloys. Metall. Trans. A 17, 53 (1986).

    Article  Google Scholar 

  13. S. Miyazaki, S. Kimura, and K. Otsuka: Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti–50.5 at.% Ni single crystals. Philos. Mag. A 57, 467 (1988).

    Article  CAS  Google Scholar 

  14. G.B. Stachowiak and P.G. McCormick: Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy. Acta Metall. 36, 291 (1988).

    Article  CAS  Google Scholar 

  15. T. Lehnert, S. Crevoiserat, and R. Gotthardt: Transformation properties and microstructure of sputter-deposited Ni–Ti shape memory alloy thin films. J. Mater. Sci. 37, 1523 (2002).

    Article  CAS  Google Scholar 

  16. X.-G. Ma and K. Komvopoulos: Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 83, 3773 (2003).

    Article  CAS  Google Scholar 

  17. X.-G. Ma and K. Komvopoulos: Pseudoelasticity of shapememory titanium-nickel films subjected to dynamic nanoindentation. Appl. Phys. Lett. 84, 4274 (2004).

    Article  CAS  Google Scholar 

  18. Q. Meng, Y. Rong, and T.Y. Hsu: Nucleation barrier for phase transformations in nanosized crystals. Phys. Rev. B. 65, 174118 (2002).

    Article  Google Scholar 

  19. A.G. Evans, N. Burlingame, M. Drory, and W.M. Kriven: Martensitic transformations in zirconia—Particle size effects and toughening. Acta Metall. 29, 447 (1981).

    Article  CAS  Google Scholar 

  20. W.Y. Yan, G. Reisner, and F.D. Fischer: Micromechanical study on the morphology of martensite in constrained zirconia. Acta Mater. 45, 1969 (1997).

    Article  CAS  Google Scholar 

  21. R. Santamarta and D. Schryvers: Effect of amorphous–crystalline interfaces on the martensitic transformation in Ti50Ni25Cu25. Scripta Mater. 50, 1423 (2004).

    Article  CAS  Google Scholar 

  22. K. Hackl, M. Schmidt-Baldassari, W. Zhang, and G. Eggeler: Surface energies and size effects in shape-memory-alloys. Mater. Sci. Eng. A 378, 499 (2004).

    Article  Google Scholar 

  23. M. Lin, G.B. Olson, and M. Cohen: Homogeneous martensitic nucleation in Fe–Co precipitates formed in a Cu matrix. Acta Metall. Mater. 41, 253 (1993).

    Article  CAS  Google Scholar 

  24. O. Kitakami, H. Sato, and Y. Shimada: Size effect on the crystal phase of cobalt fine particles. Phys. Rev. B 56, 13849 (1997).

    Article  CAS  Google Scholar 

  25. S. Kajiwara, S. Ohno, and K. Honma: Martensitic transformations in ultra-fine particles of metals and alloys. Philos. Mag. A 63, 625 (1991).

    Article  CAS  Google Scholar 

  26. T. Waitz and H.P. Karnthaler: Martensitic transformation of TiNi nanocrystals embedded in an amorphous matrix. Acta Mater. 52, 5461 (2004).

    Article  CAS  Google Scholar 

  27. T. Waitz, V. Kazykhanov, and H.P. Karnthaler: Martensitic phase transformations in nanocrystalline TiNi studied by TEM. Acta Mater. 52, 137 (2004).

    Article  CAS  Google Scholar 

  28. P. Lukáš, P. Šittner, D. Lugovoy, D. Neov, and M. Ceretti: In situ neutron diffraction studies of the R-phase transformation in the TiNi shape memory alloy. Appl. Phys. A 74(Suppl.), S1121 (2002).

    Article  Google Scholar 

  29. T. Fukuda, T. Saburi, K. Doi, and S. Nenno: Nucleation and selfaccommodation of the R-phase in Ti–Ni alloys. Mater. Trans. JIM 33, 271 (1992).

    Article  CAS  Google Scholar 

  30. F.E. Wang, B.F. DeSavage, W.J. Buehler, and W.R. Hosler: The irreversible critical range in the TiNi transition. J. Appl. Phys. 39, 2166 (1968).

    Article  CAS  Google Scholar 

  31. X.-G. Ma and K. Komvopoulos: In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape memory titanium-nickel films. J. Mater. Res. 20, (July 2005, in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Komvopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, D., Komvopoulos, K. Thickness effect on thermally induced phase transformations in sputtered titanium-nickel shape-memory films. Journal of Materials Research 20, 1606–1612 (2005). https://doi.org/10.1557/JMR.2005.0209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0209

Navigation