Skip to main content
Log in

Fatigue behavior of hot-extruded Mg–10Gd–3Y magnesium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the influence of T5 heat treatment on tensile and fatigue behavior of hot-extruded Mg–10Gd–3Y (wt%) magnesium alloy has been investigated. High cycle fatigue tests were carried out at a stress rate (R) of -1 and a frequency of 100 Hz using hour-glass-shaped round specimens with a gauge diameter of 5.8 mm. The results show that fatigue strength (at 107 cycles) of Mg–10Gd–3Y magnesium alloy increases from 150 to 165 MPa after T5 heat treatment, i.e., the improvement of 10% in fatigue strength has been achieved. However, the crack growth resistance is lowered by T5 heat treatment. Results of microstructure observation and scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analysis suggest that the fatigue strength in the Mg–10Gd–3Y magnesium alloy is determined by the threshold stress of basal slip, which is induced by solid solution hardening and precipitation hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Yang, Y.B. Liu High cycle fatigue characterization of two die-cast magnesium alloys. Mater. Charact. 59, 567 (2008)

    Article  CAS  Google Scholar 

  2. A. Luo, M.O. Pekguleryuz Review: Cast magnesium alloys for elevated temperature applications. J. Mater. Sci. 29, 5259 (1994)

    Article  CAS  Google Scholar 

  3. B.L. Mordike, T. Ebert Magnesium: Properties—Applications—Potential. Mater. Sci. Eng., A 302, 37 (2001)

    Article  Google Scholar 

  4. L.L. Rokhlin Advanced light alloys and composites Proceedings of NATO Advanced Study Institute (Kluwer, Dordrecht, The Netherlands 1998) 1443–1448

    Google Scholar 

  5. I.A. Anyanwu, S. Kamado, Y. Kojima Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42, 1206 (2001)

    Article  CAS  Google Scholar 

  6. T. Honma, T. Ohkubo, S. Kamado, K. Hono Effect of Zn on age hardening and elongation in Mg–2.0Gd–1.2Y–0.2 Zr alloy. Acta Mater. 55, 4137 (2007)

    Article  CAS  Google Scholar 

  7. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding Precipitation in a Mg–10Gd–3Y–0.4Zr (wt%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 421, 309 (2006)

    Article  CAS  Google Scholar 

  8. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427, 316 (2007)

    Article  CAS  Google Scholar 

  9. I.A. Anyanwu, S. Kamado, Y. Kojima Creep properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42, 1212 (2001)

    Article  CAS  Google Scholar 

  10. T. Honma, T. Ohkubo, K. Hono, S. Kamado Chemistry of nanoscale precipitates in Mg–2.1Gd–0.6Y–0.2Zr (at.%) alloy investigated by the atom probe technique. Mater. Sci. Eng., A 395, 301 (2005)

    Article  Google Scholar 

  11. J.W. Chang, X.W. Guo, S.M. He, P.H. Fu, L.M. Peng, W.J. Ding Investigation of the corrosion for Mg–xGd–3Y–0.4Zr (x = 6%, 8%, 10%, 12%, mass fraction) alloys in a peak-aged condition. Corros. Sci. 50, 166 (2008)

    Article  CAS  Google Scholar 

  12. J. Wang, J. Meng, D.P. Zhang, D.X. Tang Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Mater. Sci. Eng., A 456, 78 (2007)

    Article  Google Scholar 

  13. Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto Rapidly solidified powder metallurgy Mg97 Zn1 Y2 alloys with excellent tensile yield strength above 600 MPa. Mater. Trans., JIM 42, 1172 (2001)

    Article  CAS  Google Scholar 

  14. A.A Nayeb-Hashemi, J.B. Clark Phase Diagrams of Binary Magnesium Alloys (ASM International, Metals Park, OH 1988)

    Google Scholar 

  15. X.B. Liu, R.S. Chen, E.H. Han Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 465, 232 (2008)

    Article  CAS  Google Scholar 

  16. W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, J.D. Lee Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 51, 3293 (2003)

    Article  CAS  Google Scholar 

  17. M. Hilpert, A. Styczynski, J. Kiese, L. Wagner Magnesium Alloys and Their Application edited by B.L. Mordike and K.U. Kainer (Werkstoff-Informationsgesellshaft, Hamburg 1998) 319–324

  18. T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45, 89 (2001)

    Article  CAS  Google Scholar 

  19. V.V. Ogarevic, R.I. Stephens Fatigue of magnesium alloys. Annu. Rev. Mater. Sci. 20, 141 (1990)

    Article  CAS  Google Scholar 

  20. S. Ishihara, Z.Y. Nan, T. Goshima Effect of microstructure on fatigue behavior of AZ31 magnesium alloy. Mater. Sci. Eng., A 468–470, 214 (2007)

    Article  Google Scholar 

  21. J.F. Nie, X. Gao, S.M. Zhu Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr. Mater. 53, 1049 (2005)

    Article  CAS  Google Scholar 

  22. J.F. Nie Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48, 1009 (2003)

    Article  CAS  Google Scholar 

  23. Z.Y. Nan, S. Ishihara, A.J. McEvily, H. Shibata, K. Komano On the sharp bend of the S–N curve and the crack propagation behavior of extruded magnesium alloy. Scr. Mater. 56, 649 (2007)

    Article  CAS  Google Scholar 

  24. D.K. Xu, L. Liu, Y.B. Xu, E.H. Han The crack initiation mechanism of the forged Mg–Zn–Y–Zr alloy in the super-long fatigue life regime. Scr. Mater. 56, 1 (2007)

    Article  CAS  Google Scholar 

  25. J.H. Kim, M.G. Kim Considerations in non-propagating crack of pure titanium. Mater. Sci. Eng., A 346, 216 (2003)

    Article  Google Scholar 

  26. T. Morita, M. Shimizu, K. Kawasaki, T. Chiba Fatigue property of nitrided Ti–6Al–4V alloy. Trans. JSME 56, 1915 (1990)

    Article  CAS  Google Scholar 

  27. M.A. Gharghouri, G.C. Weatherly, J.D. Embury, J. Root Study of the mechanical properties of Mg–7.7at.% Al by in situ neutron diffraction. Philos. Mag. A 79, 1671 (1999)

    Article  CAS  Google Scholar 

  28. C.S. Roberts Magnesium and Its Alloys (John Wiley and Sons, New York 1960)

    Google Scholar 

  29. D. Chandrasekaran Solid solution hardening: A comparison of two models. Mater. Sci. Eng., A 309–310, 184 (2001)

    Article  Google Scholar 

  30. K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding Effect of pre-deformation on aging characteristics and mechanical properties of a Mg–Gd–Nd–Zr alloy. Mater. Sci. Eng., A 491, 103 (2008)

    Article  Google Scholar 

  31. H. Jin-feng, Y. Hong-yan, L. Yon-bing, C. Hua, H. Jian-ping, Z. Ji-shan Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthening effect. Mater. Des. 30, 440 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, WC., Dong, J., Zhang, P. et al. Fatigue behavior of hot-extruded Mg–10Gd–3Y magnesium alloy. Journal of Materials Research 25, 773–783 (2010). https://doi.org/10.1557/JMR.2010.0104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0104

Navigation