Skip to main content
Log in

Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

X-ray diffraction from a synchrotron source was employed in an attempt to identify the crystal structures in zirconia ceramics produced by the sol-gel method. The particles of chemically precipitated zirconia, after calcination below 600 °C, are very fine, and have a diffracting particle size in the range of 7-15 nm. As the tetragonal and cubic structures of zirconia have similar lattice parameters, it is difficult to distinguish between the two. The tetragonal structure can be identified only by the characteristic splittings of the Bragg profiles from the “c” index planes. However, these split Bragg peaks from the tetragonal phase in zirconia overlap with one another due to particle size broadening. In order to distinguish between the tetragonal and cubic structures of zirconia, three samples were studied using synchrotron radiation source. The results indicated that a sample containing 13 mol% yttria-stabilized zirconia possessed the cubic structure with a0 = 0.51420 ± 0.00012 nm. A sample containing 6.5 mol% yttria stabilized zirconia was found to consist of a cubic phase with a0 = 0.51430 ± 0.00008 nm. Finally, a sample which was precipitated from a pH 13.5 solution was observed to have the tetragonal structure with a0 = 0.51441 ± 0.00085 nm and c0 = 0.51902 ± 0.00086.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Ruff and F.Z. Ebert, Anorg. U. All. Gem. Chem. 180, 19–41 (1929).

    Article  CAS  Google Scholar 

  2. P. Murray and E.B. Allison, Trans. Brit. Ceram. Soc. 53 6, 335–361 (1954).

    CAS  Google Scholar 

  3. C. T. Lynch, F. W. Bahldiek, and L. B. Robinson, J. Am. Ceram. Soc. 44 3, 147–148 (1961).

    Article  CAS  Google Scholar 

  4. R.N. Patil and E.C. Subba Rao, Acta Crystallogr. A26, 555 (1970).

    Google Scholar 

  5. H. S. Maiti, K.V.G.K. Gokhale, and E.C. Subba Rao, J. Am. Ceram. Soc. 55 6, 317–322 (1972).

    Article  CAS  Google Scholar 

  6. A. H. Hueur and M. Rühle, in Advances in Ceramics, edited by N. Claussen, M. Rühle, and A. H. Hueur (Am. Ceram. Soc., Columbus, OH, 1984), Vol. 12, pp. 1–13.

  7. R. Suyama, T. Ashida, and S. Kume, J. Am. Ceram. Soc. 68 (12), C-134 (1985).

  8. R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Nature 258, 703 (1975).

    Article  CAS  Google Scholar 

  9. K. S. Mazdiyasni, C. T. Lynch, and J. S. Smith, II, J. Am. Ceram. Soc. 50 (10), 532 (1967).

    Article  CAS  Google Scholar 

  10. B. H. Davis, J. Am. Ceram. Soc. 67 (8), C-168 (1984).

  11. R. Srinivasan, R.J. De Angelis, and B. H. Davis, J. Mater. Res. 1, 583 (1986).

    Article  Google Scholar 

  12. R. Srinivasan, M. B. Harris, S. F. Simpson, R. J. De Angelis, and B. H. Davis, J. Mater. Res. 3, 787 (1988).

    Article  CAS  Google Scholar 

  13. S. S. Jada and N.G. Peletis, J. Mater. Sci. Lett. 8, 243–246 (1989).

    Article  CAS  Google Scholar 

  14. G. T. Mamott, P. Barnes, S.E. Tarling, S.L. Jones, and C.J. Norman, Powder Diffraction 3 4, 234–239 (1988).

    Article  CAS  Google Scholar 

  15. Magnesium Elektron Publication #113, Zirconia and Zirconia Ceramics, edited by R. Stevens (Magnesium Elektron Ltd., 1986).

  16. K.K. Srivastava, R.N. Patil, C.B. Choudhary, K.V.G.K. Gokhale, and E. C. Subba Rao, Trans. Brit. Ceram. Soc. 73 (5), 85–91 (1974).

  17. R.A. Miller, R.G. Garlick, and J.L. Smialek, J. Am. Ceram. Soc. Bull. 62 (12) (1983).

  18. R. A. Miller, J. L. Smialek, and R. G. Garlick, in Adv. Ceram. III. Science and Technology of Zirconia, edited by A. H. Hener and L.W. Hobbs (Am. Ceram. Soc., Columbus, OH, 1981), pp. 241–253.

    Google Scholar 

  19. R.H.J. Hannink, J. Mater. Sci. 13, 2487 (1978).

  20. A. Paterson and R. Stevens, J. Mater. Res. 1, 295 (1986).

    Article  CAS  Google Scholar 

  21. A. Benedetti, G. Fagherazzi, and F. Pinna, J. Am. Ceram. Soc. 72 (3), 467 (1989).

    Article  CAS  Google Scholar 

  22. J. B. Hastings, W. Thomlinson, and D. E. Cox, J. Appl. Cryst. 17, 85–89 (1984).

  23. T.K. Gupta, J. Mater. Sci. 12, 2421–2426 (1977).

  24. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures (Wiley & Sons, New York, 1967), p. 491.

  25. M.H. Mueller, L. Heaton, and K.T. Miller, Acta Crystallogr. 13, 828 (1960).

  26. R. Srinivasan, S.F. Simpson, J. M. Harris, and B.H. Davis, J. Mater. Sci. Lett. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, R., De Angelis, R.J., Ice, G. et al. Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source. Journal of Materials Research 6, 1287–1292 (1991). https://doi.org/10.1557/JMR.1991.1287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1287

Navigation