Skip to main content
Log in

Two- and three-dimensional zinc oxide nanostructures and its photocatalytic dye degradation performance study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The zinc oxide (ZnO) nanostructures were synthesized using hydrothermal reaction technique at 180 °C with varying reaction time viz., 2, 4, 8 and 12 h and characterized with different spectroscopic/microscopic techniques. XRD indicate the formation of hexagonal phase of ZnO in all the prepared samples. The FESEM confirms the formation of hexagonal-shaped plate-like ZnO nanostructures having size in the range of 50 to 100 nm with the thickness of 10–15 nm, at 2 h reaction time. Further increase in the reaction time leads to increase in thickness of hexagonal ZnO plates resulting in formation of three-dimensional (3D) distorted spherical structures with facets. The photocatalytic activities were investigated by following degradation methylene blue (MB) dye. The ZnO prepared at 8 h of reaction time shows highest MB degradation rate, the apparent rate constant is 3.3 × 10–2 ± 0.1 × 10–2 min−1, almost five times more than 4 h reaction time.

Graphic abstract

Photocatalytic dye degradation mechanism for two- & three-dimensional Zinc Oxide nanostructures on FESEM enlarge image of 8 h reaction time. Recycle study of MB degradation up to 5 recycles is shown (photographs of MB dye at time t0 and t120)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Wang, H. Tian, C. Ren, J. Yu, M. Sun, Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep. 8, 12009 (2018)

    Article  CAS  Google Scholar 

  2. M. Gohari, A. Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review. Crit. Rev. Environ. Sci. Technol. 48, 806(2018).

  3. M. Limo, A. Rabada, E. Boix, V. Thota, Z. Westcott, V. Puddu, C. Perry, Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem. Rev. 118, 11118 (2018)

    Article  CAS  Google Scholar 

  4. L. Jing, W. Zhou, G. Tian, H. Fu, Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 42, 9509 (2013)

    Article  CAS  Google Scholar 

  5. S. Danwittayakul, M. Jaisai, T. Koottatep, J. Dutta, Enhancement of photocatalytic degradation of methyl orange by supported zinc oxide nanorods/zinc stannate (ZnO/ZTO) on porous substrates. Ind. Eng. Chem. Res. 52, 13629 (2013)

    Article  CAS  Google Scholar 

  6. R. Medhi, M.D. Marquez, T. Lee, Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. ACS Appl. Nano Mater. 3, 6156 (2020)

    Article  CAS  Google Scholar 

  7. T. Khalaf, F. Buazar, K. Ghanemi, Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles towards organosulfur pollutants. Sci. Rep. 9, 6866 (2019)

    Article  CAS  Google Scholar 

  8. P. Wu, H. Zhang, N. Du, L. Ruan, D. Yang, A Versatile approach for the synthesis of ZnO nanorod-based hybrid nanomaterials via layer-by-layer assembly. J. Phys. Chem. C 113, 8147 (2009)

    Article  CAS  Google Scholar 

  9. T. Gao, Q. Li, T. Wang, Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem. Mater. 17, 887 (2005)

    Article  CAS  Google Scholar 

  10. I. Bilecka, P. Elser, M. Niederberger, Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano 3, 467 (2009)

    Article  CAS  Google Scholar 

  11. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717 (2012)

    Article  CAS  Google Scholar 

  12. A. Jacob, L. Balakrishnan, K. Shambavi, Z. Alex, Multi-band visible photoresponse study of Co2+ doped ZnO nanoparticles. RSC Adv. 7, 39657 (2017)

    Article  CAS  Google Scholar 

  13. K. Wetchakun, N. Wetchakun, S. Sakulsermsuk, An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. J. Ind. Eng. Chem. 71, 19 (2019)

    Article  CAS  Google Scholar 

  14. P. Kalisamya, M. Lallimathia, M. Suryamathib, B. Palanivel, M. Venkatachalam, ZnO-embedded S-doped g-C3N4 heterojunction: mediator-free Z-scheme mechanism for enhanced charge separation and photocatalytic degradation. RSC Adv. 10, 28365 (2020)

    Article  Google Scholar 

  15. M. Zheng, Y. Ding, L. Yu, X. Du, Y. Zhao, In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution. Adv. Funct. Mater. 1605846, 1 (2017)

    Google Scholar 

  16. V. Pandit, S. Arbuj, R. Hawaldar, P. Kshirsagar, J. Ambekar, U. Mulik, S. Gosavi, B. Kale, Hierarchical CdS nanostructure by Lawesson’s reagent and its enhanced photocatalytic hydrogen production. RSC Adv. 5, 13715 (2015)

    Article  CAS  Google Scholar 

  17. A. Atwan, I. Elmehasseb, N. Talha, M. Kemary, Parameters affecting carbofuran photocatalytic degradation in water using ZnO nanoparticles, J. Chin. Chem. Soc., 1 (2020).

  18. H. Hao, X. Lang, Metal sulfide photocatalysis: visible-light-induced organic transformations. Chem. Cat. Chem. 11, 1378 (2019)

    CAS  Google Scholar 

  19. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919 (2014)

    Article  CAS  Google Scholar 

  20. S. Zhu, D. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 7, 1700841 (2017)

    Article  CAS  Google Scholar 

  21. Y. Yuan, D. Chen, Z. Yu, Z. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 6, 11606 (2018)

    Article  CAS  Google Scholar 

  22. C. Regmi, B. Joshi, S. Ray, G. Gyawali, R. Pandey, Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front. Chem. 6, 1 (2018)

    Article  CAS  Google Scholar 

  23. Z. Wang, J. Huang, J. Mao, Q. GuO, Z. Chen, Y. Lai, Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. J. Mater. Chem. A 8, 2934 (2020)

    Article  CAS  Google Scholar 

  24. K. Aqad, C. Basheer, Photocatalytic degradation of basic blue dye using zinc nanoparticles decorated graphene oxide nanosheet. J. Phys. Org. Chem. (2020). https://doi.org/10.1002/poc.4117

    Article  Google Scholar 

  25. D. Giannakoudakis, A. Qayyum, D. Lomot, M. Besenhard, D. Lisovytskiy, T. Bandosz, J. Colmenares, Boosting the photoactivity of grafted Titania: ultrasound-driven synthesis of a multi-phase heterogeneous nano-architected photocatalyst. Adv. Funct. Mater. 2007115, 1 (2020)

    Google Scholar 

  26. G. Odling, R. Bhosale, S. Ogale, N. Robertson, Sequential ionic layer adsorption reaction formation of LaVO4–TiO2 nanocomposites for photocatalytic water treatment. Mater. Adv. 1, 271 (2020)

    Article  CAS  Google Scholar 

  27. A. Khlyustova, N. Sirotkin, T. Kusova, A. Kraev, V. Titov, A. Agafonov, Doped TiO2: the effect of doping elements on photocatalytic activity. Mater. Adv. 1, 1193 (2020)

    Article  CAS  Google Scholar 

  28. R. Das, C. Vecitis, A. Schulze, B. Cao, A. Ismail, X. Lu, J. Chen, S. Ramakrishna, Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46, 6946 (2017)

    Article  CAS  Google Scholar 

  29. J. Zhang, B. Li, W. Yang, J. Liu, Advances in the catalytic production and utilization of sorbitol. Ind. Eng. Chem. Res. 53, 10629 (2014)

    Article  CAS  Google Scholar 

  30. L. Pan, X. Liu, Z. Sun, C. Sun, Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient Photocatalysis. J. Mater. Chem. A 1, 8299 (2019)

    Article  CAS  Google Scholar 

  31. N. Wada, Y. Yokomizo, C. Yogi, M. Katayama, A. Tanaka, K. Kojima, K. Ozutsumi, Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018)

    Article  CAS  Google Scholar 

  32. C. Li, Z. Zhao, L.H. Shindume, H. Huang, Z. Peng, Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017)

    Article  CAS  Google Scholar 

  33. Y. Yan, T. Chen, Y. Zou, Y. Wang, Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016)

    Article  CAS  Google Scholar 

  34. W. Zhang, C. Wang, X. Liu, J. Li, Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017)

    Article  CAS  Google Scholar 

  35. X. Jiang, Y. Ma, C. Zhao, Y. Chen, M. Cui, J. Yu, Y. He, Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation. J. Mater. Res. 33, 2385 (2018)

    Article  CAS  Google Scholar 

  36. M. Wang, Z. Peng, H. Li, Z. Zhao, X. Fu, C fibers@ MoO2 nanoparticles core-shell composite: Highly efficient solar-driven photocatalyst. J. Mater. Res. 33, 685 (2018)

    Article  CAS  Google Scholar 

  37. H. Li, H. Zhu, M. Wang, X. Min, M. Fang, Z. Huang, X. Wu, A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. J. Mater. Res. 32, 3650 (2017)

    Article  CAS  Google Scholar 

  38. D. Xu, W. Shi, C. Xu, S. Yang, H. Bai, C. Song, B. Chen, Hydrothermal synthesis of 3D Ba5Ta4O15 flower-like microsphere photocatalyst with high photocatalytic properties. J. Mater. Res. 31, 2640 (2016)

    Article  CAS  Google Scholar 

  39. Z. Shen, Z. Zhao, J. Qian, Z. Peng, X. Fu, Synthesis of WO3−x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res. 31, 1065 (2016)

    Article  CAS  Google Scholar 

  40. Y. Wang, T. Liu, Q. Huang, C. Wu, D. Shan, Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres. J. Mater. Res. 31, 2317 (2016)

    Article  CAS  Google Scholar 

  41. P. Pimpliskar, S. Motekar, G. Umarji, W. Lee, S. Arbuj, Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study. Photochem. Photobiol. Sci. 18, 1503 (2019)

    Article  CAS  Google Scholar 

  42. G. Kale, S. Arbuj, U. Kawade, S. Rane, J. Ambekar, B. Kale, Synthesis of porous nitrogen doped zinc oxide nanostructures using a novel paper mediated template method and their photocatalytic study for dye degradation under natural sunlight. Mater. Chem. Front. 2, 163 (2018)

    Article  CAS  Google Scholar 

  43. J. Vaishnav, S. Arbuj, S. Rane, D. Amalnerkar, One dimensional CdS/ZnO nanocomposites: an efficient photocatalyst for hydrogen generation. RSC Adv. 4, 47637 (2014)

    Article  CAS  Google Scholar 

  44. X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019)

    Article  CAS  Google Scholar 

  45. X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016)

    Article  CAS  Google Scholar 

  46. Z. Li, X. Wang, J. Zhang, C. Liang, L. Lu, K. Dai, Preparation of Z-scheme WO3(H2O)0.333/Ag3PO4 composites with enhanced photocatalytic activity and durability. Chin. J. Catal., 40, 326 (2019).

  47. S. Liu, M. Zhao, Z. He, Y. Zhong, H. Ding, D. Chen, Preparation of a p-n heterojunction 2D BiOI nanosheet/ 1D BiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis. Chinese. J. Catal. 40, 446 (2019)

    Article  CAS  Google Scholar 

  48. N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, L. Ge, G. Lu, Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation. Chinese. J. Catal. 40, 352 (2019)

    Article  CAS  Google Scholar 

  49. S. Arbuj, N. Rumale, A. Pokle, J. Ambekar, S., U. Mulik, D. Amalnerkar, Synthesis of photoluminescent ZnO nanopencils and their photocatalytic performance, Sci. Adv. Mater. 6, 269 (2014).

  50. C. Ong, L. Ng, A. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536 (2018)

    Article  CAS  Google Scholar 

  51. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustain. Urban Areas 27, 407 (2016)

    Google Scholar 

  52. D. Bhuyan, B. Malakar, S. Arbuj, L. Saikia, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. RSC Adv. 4, 8256 (2014)

    Article  CAS  Google Scholar 

  53. J. Lu, P. Zhang, A. Li, F. Su, T. Wang, Y. Liu, J. Gong, Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light. Chem. Commun. 49, 5817 (2013)

    Article  CAS  Google Scholar 

  54. D.D. Kumbhar, V. Pandit, S. Deshmukh, J. Ambekar, S. Arbuj, S. Rane, Synthesis of hierarchical zno nanostructure and its photocatalytic performance study. Journal of Nanoengineering and Nanomanufacturing 5, 227 (2015)

    Article  CAS  Google Scholar 

  55. X. Kong, Y. Hu, W. Pan, Effect of reaction time on the morphology and photocatalytic property of ZnO nanoparticles. Key Eng. Mater. 726, 365 (2017)

    Article  Google Scholar 

  56. S. Damkale, S. Arbuj, G. Umarji, R. Panmand, S. Khore, R. Sonawane, S. Rane, B. Kale, Two-dimensional hexagonal SnS2 nanostructures for photocatalytic hydrogen generation and dye degradation. Sustainable Energy Fuels 3, 3406 (2019)

    Article  CAS  Google Scholar 

  57. K. Nevase, S. Arbuj, V. Pandit, J. Ambekar, S. Rane, Synthesis, characterization and photocatalytic activity of tungsten oxide nanostructures. Journal of Nanoengineering and Nanomanufacturing 5, 1 (2015)

    Article  CAS  Google Scholar 

  58. V. Pandit, S. Arbuj, U. Mulik, B. Kale, Novel functionality of organic 6, 13-pentacenequinone as a photocatalyst for hydrogen production under solar light. Environ. Sci. Technol. 48, 4178 (2014)

    Article  CAS  Google Scholar 

  59. V. Pandit, S. Arbuj, Y. Pandit, S. Naik, S. Rane, U. Mulik, S. Gosavi, B. Kale, Solar light driven dye degradation using novel organo–inorganic (6,13-pentacenequinone/TiO2) nanocomposite. RSC Adv. 5, 10326 (2015)

    Article  CAS  Google Scholar 

  60. V. Pandit, S. Arbuj, R. Hawaldar, P. Kshirsagar, U. Mulik, S. Gosavi, C. Park, B. Kale, Novel functionality of organic 6,13-pentacenequinone as a photocatalyst for hydrogen production under solar light. J. Mater. Chem. A 3, 4338 (2015)

    Article  CAS  Google Scholar 

  61. M. Trejo, P. Santiago, H. Sobral, L. Rendon, U. Pal, Synthesis and growth mechanism of one-dimensional Zn/ZnO core−shell nanostructures in low-temperature hydrothermal process. Crystal Growth Design 9, 3024 (2009)

    Article  CAS  Google Scholar 

  62. X. Wang, M. Ahmad, H. Sun, Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials 10, 1304 (2017)

    Article  CAS  Google Scholar 

  63. L. Zammouri, A. Aboulaich, B. Capoen, M. Bouazaoui, M. Sarakha, M. Stitou, R. Mahiou, Synthesis of YAG:Ce/ZnO core/shell nanoparticles with enhanced UV-visible and visible light photocatalytic activity and application for the antibiotic removal from aqueous media. J. Mater. Res. 34, 1318 (2019)

    Article  CAS  Google Scholar 

  64. X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Vikram Uttam Pandit is thankful to Savitribai Phule Pune University’s Internal Quality Assurance Cell (IQAC) for ‘Aspire Research Mentorship Grant’ (No. 18TEC001239). Authors are grateful to Dr. Ganesh Raut (Principal) and Dr. Girish Pathade (Ex-Principal), Haribhai V. Desai College, Pune, Shri. Kiritbhai Shah (Chairman), Shri. Hemantbhai Maniar (Secretary), and Shri. Abhijeet Pawar (Self Finance Incharge) ‘The Poona Gujarati Kelwani Mandal’ for fruitful discussions and providing lab facilities. Authors are also grateful to Dr. Bharat B. Kale, Director General (A) and Dr. Sunit B. Rane, Senior Scientist, C-MET, Pune for providing the necessary spectroscopic analysis facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Pandit.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawale, V., Gugale, G., Chaskar, M. et al. Two- and three-dimensional zinc oxide nanostructures and its photocatalytic dye degradation performance study. Journal of Materials Research 36, 1573–1583 (2021). https://doi.org/10.1557/s43578-021-00174-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00174-w

Keywords

Navigation