Skip to main content
Log in

Consequences of Crystal Structure Differences between C14, C15, and C36 Laves Phase Polytypes for their Coexistence in Transition-Metal-Based Systems

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In various binary and ternary transition-metal-based systems, two or even three different polytypes of Laves phases coexist as equilibrium phases. A comparison of different phase diagrams reveals that the coexistence is characterized by some common features. In binary systems with cubic and hexagonal Laves phases existing at the same temperature but different compositions, the cubic C15 polytype always crystallizes at and around the stoichiometric composition whereas the hexagonal C14 and C36 polytypes are observed on theA-rich (C14) andB-rich (C36) side of the stoichiometry, respectively. On replacing theB atoms of an AB2 Laves phase by ternary additions, the highest solubility is always found in the C14 Laves phase. Ternary Laves phases A(B, C)2 in systems where none of the binary boundary systems contains a Laves phase are always of the C14 type. It is discussed how these observations are related to crystallographic differences between the three polytypic structures C14, C15, and C36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Stein, M. Palm, and G. Sauthoff, Intermetallics 13, 1056 (2005).

    Article  CAS  Google Scholar 

  2. Y. Kitano, M. Takata, and Y. Komura, J. Microsc. 142, 181 (1986).

    Article  CAS  Google Scholar 

  3. F. Stein, D. Jiang, M. Palm, G. Sauthoff, D. Grüner, and G. Kreiner, Intermetallics 16, 785 (2008).

    Article  CAS  Google Scholar 

  4. O. Dovbenko, F. Stein, M. Palm, and O. Prymak, Intermetallics 18, 2191 (2010).

    Article  CAS  Google Scholar 

  5. D. Grüner, F. Stein, M. Palm, J. Konrad, A. Ormeci, W. Schnelle, Y. Grin, and G. Kreiner, Z. Kristallogr. 221, 319 (2006).

    Google Scholar 

  6. G. Kreiner, D. Grüner, Y. Grin, F. Stein, M. Palm, and A. Ormeci, Mater. Res. Soc. Symp. Proc. 1128, 487 (2009).

    Google Scholar 

  7. A.V. Davydov, U.R. Kattner, D. Josell, J.E. Blendell, R.M. Waterstrat, A.J. Shapiro, and W.J. Boettinger, Metall. Mater. Trans. A 32, 2175 (2001).

    Article  Google Scholar 

  8. F. Stein, G. Sauthoff, and M. Palm, J. Phase Equilib. 23, 480 (2002).

    Article  CAS  Google Scholar 

  9. H. Okamoto, J. Phase Equilib. Diff. 25, 571 (2004).

    Article  CAS  Google Scholar 

  10. O. Prymak and F. Stein, in preparation (2010).

  11. F. Stein, G. Sauthoff, and M. Palm, Z. Metallkd. 95, 469 (2004).

    Article  CAS  Google Scholar 

  12. M. Palm and J. Lacaze, Intermetallics 14, 1291 (2006).

    Article  CAS  Google Scholar 

  13. M. Palm, W. Sanders, and G. Sauthoff, Z. Metallkd. 87, 390 (1996).

    CAS  Google Scholar 

  14. X.L. Yan, X.Q. Chen, A. Grytsiv, V.T. Witusiewicz, P. Rogl, R. Podloucky, and G. Giester, J. Alloys Compd. 429, 10 (2007).

    Article  CAS  Google Scholar 

  15. J.H. Zhu, C.T. Liu, and P.K. Liaw, Intermetallics 7, 1011 (1999).

    Article  CAS  Google Scholar 

  16. A. Kerkau, D. Grüner, A. Ormeci, Y. Prots, H. Borrmann, W. Schnelle, E. Bischoff, Y. Grin, and G. Kreiner, Z. Anorg. Allg. Chem. 635, 637 (2009).

    Article  CAS  Google Scholar 

  17. D. Grüner, Doctoral thesis, TU Dresden, Germany (2007).

  18. O. Prymak, F. Stein, A. Kerkau, A. Ormeci, G. Kreiner, G. Frommeyer, and D. Raabe, Mater. Res. Soc. Symp. Proc. 1128, 499 (2009).

    Google Scholar 

  19. X. Yan, X.Q. Chen, A. Grytsiv, V.T. Witusiewicz, P. Rogl, R. Podloucky, V. Pomjakushin, and G. Giester, Int. J. Mater. Res. 97, 450 (2006).

    CAS  Google Scholar 

  20. X.L. Yan, X.Q. Chen, A. Grytsiv, P. Rogl, R. Podloucky, H. Schmidt, G. Giester, and X.Y. Ding, Intermetallics 16, 16 (2008).

    Article  Google Scholar 

  21. A.M. Gabay and V.S. Gaviko, J. Magn. Magn. Mater. 260, 425 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, F. Consequences of Crystal Structure Differences between C14, C15, and C36 Laves Phase Polytypes for their Coexistence in Transition-Metal-Based Systems. MRS Online Proceedings Library 1295, 299–310 (2011). https://doi.org/10.1557/opl.2011.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2011.211

Navigation