Skip to main content
Log in

Fundamental Studies of Nanometer-Scale Wear Mechanisms

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Fundamental processes of wear include the rupture of single chemical bonds and the displacement of atoms or small clusters by mechanical action. Experimental studies of such processes have become feasible with the development of scanning probe microscopy. The small volume affected in these experiments overlaps with the size scale of large atomistic simulations, making a direct comparison possible. The complexity of real-world wear processes is reduced in most nanometer-scale experiments, for example, by probing surfaces of single crystals or by establishing and maintaining carefully controlled environments, including ultraclean conditions. The studies address the onset and topography of wear, the formation of debris structures, the interplay of mechanical and chemical action, the role of ultrathin films, the role of crystal defects in wear processes, and temporal and thermal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wetzel, A. Socoliuc, E. Meyer, R. Bennewitz, E. Gnecco, C. Gerber, Rev. Sci. Instrum. 76, 103701 (2005).

    Google Scholar 

  2. S. Kopta, M. Salmeron, J. Chem. Phys. 113, 8249 (2000).

    Google Scholar 

  3. J.M. Helt, J.D. Batteas, Langmuir 21, 633 (2005).

    Google Scholar 

  4. J.M. Helt, J.D. Batteas, Langmuir 22, 6130 (2006).

    Google Scholar 

  5. A. Socoliuc, E. Gnecco, R. Bennewitz, E. Meyer, Phys. Rev. B 68, 115416 (2003).

    Google Scholar 

  6. R.W. Carpick, Q. Dai, D.F. Ogletree, M. Salmeron, Tribol. Lett. 5, 91 (1998).

    Google Scholar 

  7. N.-S. Park, M.-W. Kim, S.C. Langford, J.T. Dickinson, Langmuir 12, 4599 (1996).

    Google Scholar 

  8. P.E. Sheehan, Chem. Phys. Lett. 410, 151 (2005).

    Google Scholar 

  9. B. Such, F. Krok, M. Szymonski, Appl. Surf. Sci. 254, 5431 (2008).

    Google Scholar 

  10. T. Filleter, W. Paul, R. Bennewitz, Phys. Rev. B 77, 035430 (2008).

    Google Scholar 

  11. J.T. Dickinson, M.L. Klakken, M.H. Miles, L.C. Jensen, J. Polym. Sci. B: Polym. Phys. 23, 873 (1985).

    Google Scholar 

  12. J.T. Dickinson, S.C. Langford, C. Bandis, M.L. Dawes, Y. Kawaguchi, Appl. Surf. Sci. 154–155, 291 (2000).

    Google Scholar 

  13. T.E. Fischer, Annu. Rev. Mater. Sci. 18, 303 (1988).

    Google Scholar 

  14. S. Nakahara, S.C. Langford, J.T. Dickinson, Tribol. Lett. 1, 277 (1995).

    Google Scholar 

  15. N.-S. Park, M.-W. Kim, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 80, 2680 (1996).

    Google Scholar 

  16. J.T. Dickinson, S.C. Langford, L. Scudiero, “Spatial and temporal probes of deformation and fracture at interfaces,” in Mater. Res. Soc. Symp. Proc. 367, F. Family, B. Sapoval, P. Meakin, R. Wool, Eds. (Materials Research Society, Pittsburgh, PA, 1995), pp. 95–101.

    Google Scholar 

  17. R. Leach, F. Stevens, J.T. Dickinson, Langmuir 19, 10225 (2003).

    Google Scholar 

  18. F. Stevens, R.N. Leach, S.C. Langford, J.T. Dickinson, Langmuir 22, 3320 (2006).

    Google Scholar 

  19. L. Scudiero, S.C. Langford, J.T. Dickinson, Tribol. Lett. 6, 41 (1999).

    Google Scholar 

  20. R. Hariadi, S.C. Langford, J.T. Dickinson, Langmuir 18, 7773 (2002).

    Google Scholar 

  21. A.L. McEvoy, F. Stevens, S.C. Langford, J.T. Dickinson, Langmuir 22, 6931 (2006).

    Google Scholar 

  22. J.T. Dickinson, in Fundamentals of Friction and Wear on the Nanoscale, E. Gnecco, E. Meyer, Eds. (Springer-Verlag, Heidelberg, Germany, 2007), p. 481.

    Google Scholar 

  23. W. Maw, F. Stevens, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 92, 5103 (2002).

    Google Scholar 

  24. R. Imoto, F. Stevens, S.C. Langford, J.T. Dickinson, Appl. Phys. A, published online 3 July 2008, http://dx.doi.org/10.1007/s00339-008-4802-x.

  25. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, J. Electrochem. Soc. 137, 3612 (1990).

    Google Scholar 

  26. T. Filleter, S. Maier, R. Bennewitz, Phys. Rev. B 73, 155433 (2006).

    Google Scholar 

  27. E. Gnecco, R. Bennewitz, E. Meyer, Phys. Rev. Lett. 88, 215501 (2002).

    Google Scholar 

  28. S.N. Zhurkov, reprinted in: Int. J. Fract. 26, 295 (1984).

  29. B. Gotsmann, M.A. Lantz, Phys. Rev. Lett. 101, 125501 (2008)

  30. B. Gotsmann, U.T. Duerig, S. Sills, J. Frommer, C. Hawker, Nano Lett. 6, 296 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennewitz, R., Dickinson, J.T. Fundamental Studies of Nanometer-Scale Wear Mechanisms. MRS Bulletin 33, 1174–1180 (2008). https://doi.org/10.1557/mrs2008.248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.248

Navigation