Skip to main content
Log in

Scaffolds for Tissue Engineering

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Devices for tissue engineering comprise scaffolds with the appropriate chemistry and architecture to promote cell infiltration and colonization. The scaffold is designed with biology in mind, and thus the architecture and chemistry differ according to tissue type. In this review, we focus on scaffolds for two tissue types—bone and nervous tissue—and describe different approaches used to create them. The appropriate scaffold for a hard tissue such as bone has a high degree of interconnected macroporosity and allows the rapid invasion of cells while maintaining a rigid structure. Several approaches are described for constructing tissue-engineering scaffolds for bone. The appropriate scaffold for soft tissues like nerve fibers (e.g., axons, which conduct nerve impulses) also has a high degree of interconnected pores; however, the pores may require orientation and may be smaller. Homogeneous, high-water-content hydrogels with mechanical properties that match the soft nerve tissue are commonly used as a scaffold, and the methods used to make these are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. I.V. Yannas, P.L. Gordon, C. Huang, F.H. Silver, and J.F. Burke, U.S. Patent No. 4,280,954 (1981).

    Google Scholar 

  2. I.V. Yannas and J.F. Burke, J. Biomed. Mater. Res. 14 (1980) p. 65.

    Article  CAS  Google Scholar 

  3. I.V. Yannas, J.F. Burke, P.L. Gordon, C. Huang, and R.H. Rubenstein, J. Biomed. Mater. Res. 14 (1980) p. 107.

    Article  CAS  Google Scholar 

  4. N. Dagalakis, J. Flink, P. Stasikelis, J.F. Burke, and I.V. Yannas, J. Biomed. Mater. Res. 14 (1980) p. 511.

    Article  CAS  Google Scholar 

  5. I.V. Yannas, J.F. Burke, P.L. Gordon, and C. Huang, U.S. Patent No. 4,060,081 (1977).

    Google Scholar 

  6. I.V. Yannas, J.F. Burke, W.C. Quinby Jr, C.C. Bondoc, and W.K. Jung, Ann. Surg. 194 (1981) p. 413.

    Article  Google Scholar 

References

  1. D.A. Chakkalakal, B.S. Strates, K.L. Garvin, J.R. Novak, E.D. Fritz, T.J. Mollner, and M.H. McGuire, Tissue Eng. 7 (2) (2001) p. 161.

    Article  CAS  Google Scholar 

  2. J.R. Mauney, J. Blumberg, M. Pirum, V. Volloch, and D.L. Kaplan, Presented at the Society for Biomaterials Meeting, Tampa, FL, 2002, Abstract 30.

    Google Scholar 

  3. S. Stevenson, Clin. Orthop. Rel. Res. 355 (1998) (Suppl.) p. S239.

    Article  Google Scholar 

  4. C. Delloye, P. Simon, C. Nyssen-Behets, X. Banse, F. Bresler, and D. Schmitt, Clin. Orthop. Rel. Res. 396 (2002) p. 240.

    Article  Google Scholar 

  5. M.E. Gomes, A.S. Ribeiro, P.B. Malafaya, R.L. Reis, and A.M. Cunha, Biomaterials 22 (9) (2001) p. 883.

    Article  CAS  Google Scholar 

  6. S.V. Madihally and H.W. Matthew, Biomaterials 20 (12) (1999) p. 1133.

    Article  CAS  Google Scholar 

  7. J.K. Suh and H.W. Matthew, Biomaterials 21 (24) (2000) p. 2589.

    Article  CAS  Google Scholar 

  8. L.B. Rocha, G. Goissis, and M.A. Rossi, Biomaterials 23 (2) (2002) p. 449.

    Article  CAS  Google Scholar 

  9. H. Petite, V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin, Nat. Biotech. 18 (9) (2000) p. 959.

    Article  CAS  Google Scholar 

  10. D.J. Sartoris, D.H. Gershuni, W.H. Akeson, R.E. Holmes, and D. Resnick, Radiology 159 (1) (1986) p. 133.

    Article  CAS  Google Scholar 

  11. R.B. Irwin, M. Bernhard, and A. Biddinger, Am. J. Orthop. 30 (7) (2001) p. 544.

    CAS  Google Scholar 

  12. C.A. Vacanti, L.J. Bonassar, M.P. Vacanti, and J. Shufflebarger, N. Engl. J. Med. 344 (20) (2001) p. 1511.

    Article  CAS  Google Scholar 

  13. T.J. Flatley, K.L. Lynch, and M. Benson, Clin. Orthop. 179 (1983) p. 246.

    Article  Google Scholar 

  14. J. Goshima, V.M. Goldberg, and A.I. Caplan, Clin. Orthop. 269 (1991) p. 274.

    Article  Google Scholar 

  15. E. Kon, A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Giardino, R. Cancedda, and R. Quarto, J. Biomed. Mater. Res. 49 (3) (2000) p. 328.

    Article  CAS  Google Scholar 

  16. C.T. Laurencin, S.F. El-Amin, S.E. Ibim, D.A. Willoughby, M. Attawia, H.R. Allcock, and A.A. Ambrosio, J. Biomed. Mater. Res. 30 (2) (1996) p. 133.

    Article  CAS  Google Scholar 

  17. C.L. Lhommeau, H. Levene, S. Abramson, and J. Kohn, Tissue Eng. 4 (4) (1998) p. 468.

    Google Scholar 

  18. I. Zein, D.W. Hutmacher, K.C. Tan, and S.H. Teoh, Biomaterials 23 (4) (2002) p. 1169.

    Article  CAS  Google Scholar 

  19. J.P. Fisher, T.A. Holland, D. Dean, P.S. Engel, and A.G. Mikos, J. Biomater. Sci. Polym. Ed. 12 (6) (2001) p. 673.

    Article  CAS  Google Scholar 

  20. S.L. Ishaug-Riley, G.M. Crane-Kruger, M.J. Yaszemski, and A.G. Mikos, Biomaterials 19 (15) (1998) p. 1405.

    Article  CAS  Google Scholar 

  21. C.E. Holy, M.S. Shoichet, and J.E. Davies, Cells Mater. 7 (3) (1997) p. 223.

    CAS  Google Scholar 

  22. C.M. Agrawal, D. Huang, J.P. Schmitz, and K.A. Athanasiou, Tissue Eng. 3 (4) (1997) p. 345.

    Article  CAS  Google Scholar 

  23. P.X. Ma and J.W. Choi, Tissue Eng. 7 (1) (2001) p. 23.

    Article  CAS  Google Scholar 

  24. R.C. Thomson, M.J. Yaszemski, J.M. Powers, and A.G. Mikos, Biomaterials 19 (21) (1998) p. 1935.

    Article  CAS  Google Scholar 

  25. K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, and L.E. Weiss, J. Biomed. Mater. Res. 47 (3) (1999) p. 324.

    Article  CAS  Google Scholar 

  26. P.X. Ma, R. Zhang, G. Xiao, and R. Franceschi, J. Biomed. Mater. Res. 54 (2) (2001) p. 284.

    Article  CAS  Google Scholar 

  27. C.E. Holy, M.S. Shoichet, A.A. Campbell, L. Song, and J.E. Davies, in Proc. 11th Int. Symp. on Bioceramics, edited by R.Z. LeGeros (World Scientific, River Edge, NJ, 1998) p. 509.

  28. M.J. Yaszemski, J.B. Oldham, L. Lu, and B.L. Currier, in Bone Engineering, edited by J.E. Davies (em2 Inc., Toronto, 2000) p. 541.

  29. C.K. Colton, Cell Transplant. 4 (4) (1995) p. 415.

    Article  CAS  Google Scholar 

  30. J.E. Sanders, S.G. Malcolm, S.D. Bale, Y.N. Wang, and S. Lamont, Microvasc. Res. 64 (1) (2002) p. 174.

    Article  CAS  Google Scholar 

  31. D.J. Mooney, P.M. Kaufmann, K. Sano, K.M. McNamara, J.P. Vacanti, and R. Langer, Transplant. Proc. 26 (6) (1994) p. 3425.

    CAS  Google Scholar 

  32. W.L. Murphy, M.C. Peters, D.H. Kohn, and D.J. Mooney, Biomaterials 21 (24) (2000) p. 2521.

    Article  CAS  Google Scholar 

  33. L.D. Shea, E. Smiley, J. Bonadio, and D.J. Mooney, Nat. Biotech. 17 (6) (1999) p. 551.

    Article  CAS  Google Scholar 

  34. K. Whang, D.C. Tsai, E.K. Nam, M. Aitken, S.M. Sprague, P.K. Patel, and K.E. Healy, J. Biomed. Mater. Res. 42 (4) (1998) p. 491.

    Article  CAS  Google Scholar 

  35. H.D. Zegzula, D.C. Buck, J. Brekke, J.M. Wozney, and J.O. Hollinger, J. Bone Joint Surg. Am. 79 (12) (1997) p. 1778.

    Article  CAS  Google Scholar 

  36. G.E. Rutkowski, C.A. Miller, and S.K. Mallapragada, in Methods of Tissue Engineering, edited by A. Atala and R.P. Lanza (Academic Press, San Diego, 2002) p. 681.

  37. A.G. Mikos, G. Sarakinos, S.M. Leite, J.P. Vacanti, and R. Langer, Biomaterials 14 (5) (1993) p. 323.

    Article  CAS  Google Scholar 

  38. K. Whang and K.E. Healy, in Methods of Tissue Engineering, edited by A. Atala and R.P. Lanza (Academic Press, San Diego, 2002) p. 697.

  39. R. Zhang and P.X. Ma, in Methods of Tissue Engineering, edited by A. Atala and R.P. Lanza (Academic Press, San Diego, 2002) p. 715.

  40. T.P. Richardson, M.C. Peters, and D.J. Mooney, in Methods of Tissue Engineering, edited by A. Atala and R.P. Lanza (Academic Press, San Diego, 2002) p. 733.

  41. A.G. Mikos, Y. Bao, L.G. Cima, D.E. Ingber, J.P. Vacanti, and R. Langer, J. Biomed. Mater. Res. 27 (2) (1993) p. 183.

    Article  CAS  Google Scholar 

  42. D.W. Hutmacher, Biomaterials 21 (24) (2000) p. 2529.

    Article  CAS  Google Scholar 

  43. S. Yang, K.F. Leong, Z. Du, and C.K. Chua, Tissue Eng. 8 (10) (2002) p. 1.

    Article  CAS  Google Scholar 

  44. S.H. Teoh, D.W. Hutmacher, K.C. Tan, K.F. Tam, and I. Zein, U.S. Patent No. 60/233974 (September 20, 2000).

    Google Scholar 

  45. S.L. Ishaug, G.M. Crane, M.J. Miller, A.W. Yasko, M.J. Yaszemski, and A.G. Mikos, J. Biomed. Mater. Res. 36 (1) (1997) p. 17.

    Article  CAS  Google Scholar 

  46. I.K. Kwon, K.D. Park, S.W. Choi, S.H. Lee, E.B. Lee, J.S. Na, S.H. Kim, and Y.H. Kim, J. Biomater. Sci. Polym. Ed. 12 (10) (2001) p. 1147.

    Article  CAS  Google Scholar 

  47. D.E. Hodges, K.M. McNally, and A.J. Welch, J. Biomed. Opt. 6 (4) (2001) p. 427.

    Article  CAS  Google Scholar 

  48. C. Wang, Q. Wang, T. Mao, H. Wang, and X. Zhu, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 17 (4) (2002) p. 396.

    Google Scholar 

  49. W.L. Murphy, D.H. Kohn, and D.J. Mooney, J. Biomed. Mater. Res. 50 (1) (2000) p. 50.

    Article  CAS  Google Scholar 

  50. C.J. Goodwin, M. Braden, S. Downes, and N.J. Marshall, J. Biomed. Mater. Res. 40 (2) (1998) p. 204.

    Article  CAS  Google Scholar 

  51. R.C. Thomson, M.J. Yaszemski, J.M. Powers, and A.G. Mikos, J. Biomater. Sci. Polym. Ed. 7 (1) (1995) p. 23.

    Article  CAS  Google Scholar 

  52. W.L. Murphy, R.G. Dennis, J.L. Kileny, and D.J. Mooney, Tissue Eng. 8 (1) (2002) p. 43.

    Article  CAS  Google Scholar 

  53. J.M. Karp, M.S. Shoichet, and J.E. Davies, J. Biomed. Mater. Res. 64A (2) (2003) p. 388.

    Article  CAS  Google Scholar 

  54. P.M. Richardson, U.M. McGuinness, and A.J. Aguayo, Nature 284 (1980) p. 264.

    Article  CAS  Google Scholar 

  55. A.D.O Levi, H. Dancausse, X.M. Li, S. Duncan, L. Horkey, and M. Oliviera, J. Neurosurg. 96 (2) (2002) (Suppl.) p. 197.

    Google Scholar 

  56. G.L. Chang, T.K. Hung, and W.W. Feng, J. Biomech. Eng. 110 (1988) p. 115.

    Article  CAS  Google Scholar 

  57. M.E. Mainwairing, J.F. Walsh, and P.A. Tresco, “Remodeling Fibroblastic Tissue at the Neural Biomaterial Interface,” presented at the Society for Biomaterials Meeting, Tampa, FL, 2002, Abstract 46.

    Google Scholar 

  58. S. Woerly, P. Petrov, E. Sykova, T. Roitbak, Z. Simonova, and A.R. Harvey, Tissue Eng. 5 (1999) p. 467.

    Article  CAS  Google Scholar 

  59. N. Dubey, P.C. Letourneau, and R.T. Tranquillo, Biomaterials 22 (2001) p. 1065.

    Article  CAS  Google Scholar 

  60. N. Dubey, P.C. Letourneau, and R.T. Tranquillo, Exp. Neurol. 158 (1999) p. 338.

    Article  CAS  Google Scholar 

  61. V. Maquet, D. Martin, B. Malgrange, R. Franzen, J. Schoenen, G. Moonen, and R. Jerome, J. Biomed. Mater. Res. 52 (4) (2000) p. 639.

    Article  CAS  Google Scholar 

  62. V. Maquet, D. Martin, F. Scholtes, R. Franzen, J. Schoenen, G. Moonen, and R. Jerome, Biomaterials 22 (10) (2001) p. 1137.

    Article  CAS  Google Scholar 

  63. S.E. Gautier, M. Oudega, M. Fragoso, P. Chapon, G.W. Plant, M.B. Bunge, and J.M. Parel, J. Biomed. Mater. Res. 42 (4) (1998) p. 642.

    Article  CAS  Google Scholar 

  64. M. Oudega, S.E. Gautier, P. Chapon, M. Fragoso, M.L. Bates, J.M. Parel, and M.B. Bunge, Biomaterials 22 (10) (2001) p. 1125.

    Article  CAS  Google Scholar 

  65. M.P. Vacanti, J.L. Leonard, B. Dore, L.J. Bonassar, Y. Cao, S.J. Stachelek, J.P. Vacanti, F. O’Connell, C.S. Yu, A.P. Farwell, and C.A. Vacanti, Transplant. Proc. 33 (1–2) (2001) p. 592.

    Article  CAS  Google Scholar 

  66. S. Woerly, U.S. Patent No. 5,863,551 (January 26, 1999).

    Google Scholar 

  67. G.W. Plant, T.V. Chirila, and A.R. Harvey, Cell Transplant. 7 (4) (1998) p. 381.

    Article  CAS  Google Scholar 

  68. G.W. Plant, A.R. Harvey, and T.V. Chirila, Brain Res. 671 (1) (1995) p. 119.

    Article  CAS  Google Scholar 

  69. G.W. Plant, S. Woerly, and A.R. Harvey, Exp. Neurol. 143 (1997) p. 287.

    Article  CAS  Google Scholar 

  70. M.H. Spilker, I.V. Yannas, S.K. Kostyk, T.V. Norregaard, H.P. Hsu, and M. Spector, Restor. Neurol. Neurosci. 18 (1) (2001) p. 23.

    CAS  Google Scholar 

  71. P.D. Dalton, E. Tsai, R.L. Van Bendegem, C.H. Tator, and M.S. Shoichet, “Hydrogel Nerve Guides Promote Regeneration in the Central Nervous System,” presented at the Society for Biomaterials Meeting, Tampa, FL, 2002, Abstract 22.

    Google Scholar 

  72. J.E. Davies, J.M. Karp, and D. Baksh, Methods of Tissue Engineering, edited by A. Atala and R.P. Lanza (Academic Press, San Diego, CA, 2002) p. 333.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karp, J.M., Dalton, P.D. & Shoichet, M.S. Scaffolds for Tissue Engineering. MRS Bulletin 28, 301–306 (2003). https://doi.org/10.1557/mrs2003.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.85

Keywords

Navigation