Skip to main content
Log in

Mechanisms Active during Fracture under Constraint

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many advanced technologies center on devices of small feature sizes made of diverse materials. Internal stresses that arise in the devices during fabrication and use can result in fracture. Fracture of an individual feature in such a device may impair the function of the device. The materials surrounding the feature have a constraining effect on the elastic energy available to drive the fracture, the plastic flow associated with the fracture, and sometimes even the atomic processes at the crack tip. This article reviews fracture behavior in small structures, several distinct roles played by plasticity, and bond-breaking kinetics. Research challenges are alsooutlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.D. Nix, Metall. Trans. A 20A (1989) p. 2217.

    Google Scholar 

  2. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29 (1992) p. 63.

    Google Scholar 

  3. M.D. Thouless, J. Vac. Sci. Technol., A A9 (1991) p. 2510; J. Am. Ceram. Soc. 76 (1993) p. 2936.

    Google Scholar 

  4. A.G. Evans and J.W. Hutchinson, Acta Metall. Mater. 43 (1995) p. 2507.

    Google Scholar 

  5. J.W. Hutchinson and A.G. Evans, Acta Mater. 48 (2000) p. 125.

    Google Scholar 

  6. Z. Suo, in Encyclopedia of Materials: Science and Technology, 2nd ed. (Elsevier Science, New York, 2001) in press.

    Google Scholar 

  7. B.R. Lawn,Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  8. R.F. Cook and G.M. Pharr, in Materials Science and Technology, edited by R.W. Cahn, P. Haasen, and E.J. Kramer (VCH, Weinheim, 1994) p. 339.

  9. T.C. Lu, J. Yang, Z. Suo, A.G. Evans, R. Hecht, and R. Mehrabian, Acta Metall. Mater. 39 (1991) p. 1883.

    Google Scholar 

  10. Q. Ma, J. Xia, S. Chao, S. El-Mansy, R. McFadden, and H. Fujimoto, in Materials Reliability in Microelectronics VIII, edited by J.C. Bravman, T.N. Marieb, J.R. Lloyd, and M.A. Korhonen (Mater. Res. Soc. Symp. Proc. 516, Warrendale, PA, 1998) p. 331.

    Google Scholar 

  11. M.D. Drory and J.W. Hutchinson, Proc. R. Soc. London, Ser. A 452 (1996) p. 2319.

    Google Scholar 

  12. K.M. Liechti and Y.S. Chai, J. Appl. Mech. 58 (3) (1991) p. 680.

    Google Scholar 

  13. R. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Eng. Fracture Mech. 61 (1) (1998) p. 141.

    Google Scholar 

  14. J.L. Beuth (unpublished manuscript).

  15. J.W. Hutchinson, M.Y. He, and A.G. Evans, J. Mech. Phys. Solids 48 (2000) p. 709.

    Google Scholar 

  16. W.T.S. Huck, N. Bowden, P. Onck, T. Pardoen, J.W. Hutchinson, and G.M. Whitesides, Langmuir 16 (2000) p. 3497.

    Google Scholar 

  17. N. Sridhar, D.J. Srolovitz, and Z. Suo, Appl. Phys. Lett. 78 (2001) p. 2482.

    Google Scholar 

  18. M.Y. He, A.G. Evans, and J.W. Hutchinson, Acta Mater. 48 (2000) p. 2593.

    Google Scholar 

  19. V.K. Tolpygo and D.R. Clarke, in Elevated Temperature Coatings: Science and Technology IV, edited by N.B. Dahotre, J.M. Hampikian, and J.E. Morral (The Minerals, Metals & Materials Society, Warrendale, PA, 2001) p. 93.

  20. G. Gioia and M. Ortiz, Adv. Appl. Mech. 33 (1997) p. 119.

    Google Scholar 

  21. M.S. Hu and A.G. Evans, Acta Mater. 37 (1989) p. 917.

    Google Scholar 

  22. J.L. Beuth and N.W. Klingbeil, J. Mech. Phys. Solids 44 (1996) p. 1411.

    Google Scholar 

  23. Z. Suo, C.F. Shih, and A.G. Varias, Acta Metall. Mater. 41 (1993) p. 1551.

    Google Scholar 

  24. M. Lane, R.H. Dauskardt, A. Vainchtein, and H.J. Gao, J. Mater. Res. 15 (12) (2000) p. 2758.

    Google Scholar 

  25. A. Needleman and E. van der Giessen, MRS Bull. 26 (3) (2001) p. 211.

    Google Scholar 

  26. A.G. Varias, Z. Suo, and C.F. Shih, J. Mech. Phys. Solids 39 (1991) p. 963.

    Google Scholar 

  27. K.J. Hsia, Z. Suo, and W. Yang, J. Mech. Phys. Solids 42 (1994) p. 877.

    Google Scholar 

  28. S.X. Mao and A.G. Evans, Acta Mater. 45 (10) (1997) p. 4263.

    Google Scholar 

  29. M. Huang, Z. Suo, Q. Ma, and H. Fujimoto, J. Mater. Res. 15 (2000) p. 1239.

    Google Scholar 

  30. M.R. Begley and A.G. Evans, Trans. ASME J. Appl. Mech. in press.

  31. M. Huang, Z. Suo, and Q. Ma, J. Mech. Phys. Solids in press.

  32. R.F. Cook and E.G. Liniger, J. Am. Ceram. Soc. 76 (1993) p. 1096.

    Google Scholar 

  33. R.F. Cook and E.G. Liniger, J. Electrochem. Soc. 146 (1999) p. 4439.

    Google Scholar 

  34. Y. Wei, C.L. Chow, H.E. Fang, M.K. Neilsen, T.J. Lim, and W. Lu (unpublished manuscript).

  35. S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  36. H.H. Yu and Z. Suo, Acta Mater. 47 (1999) p. 77.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, R.F., Suo, Z. Mechanisms Active during Fracture under Constraint. MRS Bulletin 27, 45–51 (2002). https://doi.org/10.1557/mrs2002.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.19

Keywords

Navigation