Skip to main content
Log in

Elastic and Anelastic Behavior of Materials in Small Dimensions

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Under certain circumstances, decreasing the dimensions of a material may lead to elastic or anelastic properties that diverge from bulk behavior. A distinction is made between elastic deformation, for which bond rearrangements are not required, and anelastic behavior, which involves reversible deformation due to defect motion. Elastic deformation (due to bond stretching) remains structure-insensitive down to near-atomic length scales, and only small deviations are expected (of the order of 10%). More significant deviations can be observed in special cases, which are described in the article. However, elastic moduli that are much lower than expected are sometimes seen, even in careful experiments. It now appears that this behavior may be explainable by time-dependent anelastic relaxation mechanisms. In contrast to purely elastic behavior, anelastic behavior is very sensitive to microstructure and is found to be common and often significant when things become small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Th. Hesemann., O. Kraft, E. Arzt, P. Müllner, D. Nowak, S.P. Baker, K. Finkelstein, and D. Smilgies, “A Detailed Study of the Texture Evolution during Martensitic Phase Transformation in Cobalt Thin Films,” presented at Symposium P, Materials Research Society Meeting, San Francisco, April 19, 2001, paper No. P6.7.

    Google Scholar 

  2. W.M.C. Yang, T. Tsakalakos, and J.E. Hilliard, J. Appl. Phys. 48 (1977) p. 876.

    Google Scholar 

  3. D. Korn, A. Morsch, R. Birringer, W. Arnold, and H. Gleiter, J. de Phys. 49 (1988) p. 769.

    Google Scholar 

  4. S.P. Baker and W.D. Nix, J. Mater. Res. 9 (1994) p. 3145.

    Google Scholar 

  5. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mater. 45 (1997) p. 4019.

    Google Scholar 

  6. S. Sakai, H. Tanimoto, and H. Mizubayashi, Acta Mater. 47 (1) (1998) p. 211.

    Google Scholar 

  7. SchiøJ. tz, T. Vegge, Di F.D. Tolla, and K.W. Jacobsen, Phys. Rev. B 60 (1999) p. 11971.

    Google Scholar 

  8. C.V. Thompson and R. Carel, Mater. Sci. Forum 204–206 (1996) p. 83.

    Google Scholar 

  9. J.A. Ruud, D. Josell, F. Spaepen, and A.L. Greer, J. Mater. Res. 8 (1993) p. 112.

    Google Scholar 

  10. D.T. Read, Meas. Sci. Technol. 9 (1998) p. 676.

    Google Scholar 

  11. H. Huang and F. Spaepen, Acta Mater. 48 (2000) p. 3261.

    Google Scholar 

  12. R.P. Vinci, G. Cornella, and J.C. Bravman, in Proc. 5th Int. Workshop on Stress Induced Phenomena in Metallization, Vol. 491, edited by O. Kraft, E. Arzt, C.A. Volkert, P.S. Ho, and H. Okabayashi (American Institute of Physics, Woodbury, NY, 1999) p. 240.

    Google Scholar 

  13. A.J. Kalkman, A.H. Verbruggen, and G.C.A.M. Janssen, Appl. Phys. Lett. 78 (2001) p. 2673.

    Google Scholar 

  14. B.S. Berry and W.C. Pritchet, J. de Phys. 42 (1981) p. 1111.

    Google Scholar 

  15. H. Kung and T. Foecke, MRS Bull. 24 (2) (1999) p. 14.

    Google Scholar 

  16. D. Bishop, A. Heuer, and D. Williams, MRS Bull. 26 (2001) p. 282.

    Google Scholar 

  17. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).

    Google Scholar 

  18. A.S. Nowick and B.S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).

    Google Scholar 

  19. M.J. Kobrinsky and C.V. Thompson, Acta Mater. 48 (2000) p. 625.

    Google Scholar 

  20. U. Harms, F. Klose, H. Neuhäuser, K. Fricke, E. Peiner, and A. Schlachetzki, J. Alloys Compd. 310 (2000) p. 449.

    Google Scholar 

  21. Van H. Swygenhoven, A. Caro, and D. Farkas, Mater. Sci. Eng., A 309–310 (2001) p. 440.

    Google Scholar 

  22. E. Bonetti, E.G. Campari, L. Pasquini, and E. Sampaolesi, J. Appl. Phys. 84 (1998) p. 4219.

    Google Scholar 

  23. B.S. Berry, in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P.S. Ho (Noyes Publications, Park Ridge, NJ, 1972).

  24. C. Zener, Phys. Rev. 60 (1941) p. 906.

    Google Scholar 

  25. T.S. Kê, Phys. Rev. 71 (1947) p. 533.

    Google Scholar 

  26. H.G. Bohn, M. Prieler, C.M. Su, H. Trinkhaus, and W. Schilling, Phys. Chem. Solids 55 (1994) p. 1157.

    Google Scholar 

  27. M. Prieler, H.G. Bohn, W. Schilling, and H. Trinkhaus, J. Alloys Compd. 211/212 (1994) p. 424.

    Google Scholar 

  28. H.G. Bohn and C.M. Su, Mater. Sci. Forum 119–121 (1993) p. 273.

    Google Scholar 

  29. R. Lifshitz and M.L. Roukes, Phys. Rev. B 61 (2000) p. 5600.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, S.P., Vinci, R.P. & Arias, T. Elastic and Anelastic Behavior of Materials in Small Dimensions. MRS Bulletin 27, 26–29 (2002). https://doi.org/10.1557/mrs2002.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.16

Keywords

Navigation