Skip to main content

Advertisement

Log in

Challenges and solutions for high-efficiency quantum dot-based LEDs

  • Quantum dot light-emitting devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Colloidal quantum dots (QDs) hold great promise as electrically excited emitters in light-emitting diodes (LEDs) for solid-state lighting and display applications, as highlighted recently by the demonstration of a red-emitting QD-LED with efficiency on par with that of commercialized organic LED technologies. In the past five years, important advances have been made in the synthesis of QD materials, the understanding of QD physics, and the integration of QDs into solid-state devices. Insights from this progress can be leveraged to develop a set of guidelines to direct QD-LED innovation. This article reviews the fundamental causes of inefficiency in QD-LEDs understood to date and proposes potential solutions. In particular, we emphasize the challenge in developing QD emitters that exhibit high luminescent quantum yields in the combined presence of charge carriers and electric fields that appear during traditional LED operation. To address this challenge, we suggest possible QD chemistries and active layer designs as well as novel device architectures and modes of QD-LED operation. These recommendations serve as examples of the type of innovations needed to drive development and commercialization of high-performance QD-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Nat. Photonics 7, 13 (2012).

    Google Scholar 

  2. B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, P.T. Kazlas, Nat. Photonics 7, 407 (2013).

    Google Scholar 

  3. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulović, Nano Lett. 9, 2532 (2009).

    Google Scholar 

  4. J. Kwak, W.K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, S. Lee, C. Lee, Nano Lett. 12, 2362 (2012).

    Google Scholar 

  5. P. Anikeeva, C. Madigan, J. Halpert, M. Bawendi, V. Bulović, Phys. Rev. B 78, 085434 (2008).

    Google Scholar 

  6. V. Wood, V. Bulović, ACS Nano 3, 3581 (2009).

    Google Scholar 

  7. M. Kuno, J.K. Lee, B.O. Dabbousi, F.V. Mikulec, M.G. Bawendi, J. Chem. Phys. 106, 9869 (1997).

    Google Scholar 

  8. V.I. Klimov, Science 287, 1011 (2000).

    Google Scholar 

  9. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J.A. Hollingsworth, V.I. Klimov, H. Htoon, Nature 479, 203 (2011).

    Google Scholar 

  10. D. Bozyigit, O. Yarema, V. Wood, Adv. Funct. Mater. 23, 3024 (2013).

    Google Scholar 

  11. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110 389 (2010).

    Google Scholar 

  12. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Google Scholar 

  13. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Google Scholar 

  14. O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, M.G. Bawendi, Nat. Mater. 12, 445 (2013).

    Google Scholar 

  15. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.P. Hermier, B. Dubertret, Nat. Mater 7, 659 (2008).

    Google Scholar 

  16. Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130, 5026 (2008).

    Google Scholar 

  17. F. García-Santamaría, Y. Chen, J. Vela, R.D. Schaller, J.A. Hollingsworth V.I. Klimov, Nano Lett. 9, 3482 (2009).

    Google Scholar 

  18. F. García-Santamaría, S. Brovelli, R. Viswanatha, J.A. Hollingsworth, H. Htoon, S. Crooker, V.I. Klimov, Nano Lett. 11, 687 (2011).

    Google Scholar 

  19. X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G.E. Cragg, A.L. Efros, T.D. Krauss, Nature 459, 686 (2009)

    Google Scholar 

  20. G.E. Cragg, A.L. Efros, Nano Lett. 10, 313 (2010).

    Google Scholar 

  21. B.N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V.I. Klimov, J.A. Hollingsworth, H. Htoon, Nano Lett. 12, 331 (2012).

    Google Scholar 

  22. J.S. Steckel, P. Snee, S. Coe-Sullivan, J.P. Zimmer, J.E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulović, M.G. Bawendi, Angew. Chem. 45, 5796 (2006).

    Google Scholar 

  23. J.M. Caruge, J.E. Halpert, V. Wood, V. Bulović, M.G. Bawendi, Nat. Photonics 2, 247 (2008).

    Google Scholar 

  24. D. Bozyigit, V. Wood, Y. Shirasaki, V. Bulović, J. Appl. Phys. 111, 113701 (2012).

    Google Scholar 

  25. Y. Shirasaki, G.J. Supran, W.A. Tisdale, V. Bulović, Phys. Rev. Lett. 110, 217403 (2013).

    Google Scholar 

  26. R. Kraus, P.G. Lagoudakis, A.L. Rogach, D.V. Talapin, H. Weller, J.M. Lupton J. Feldmann, Phys. Rev. Lett. 98, 3 (2007).

    Google Scholar 

  27. S.A. Empedocles, Science 278, 2114 (1997).

    Google Scholar 

  28. S.-J. Park, S. Link, W.L. Miller, A. Gesquiere, P.F. Barbara, Chem. Phys. 341 169 (2007).

    Google Scholar 

  29. M. Jarosz, V. Porter, B. Fisher, M. Kastner, M. Bawendi, Phys. Rev. B 70 195327 (2004).

    Google Scholar 

  30. R. Thakar, Y. Chen, P.T. Snee, Nano Lett. 7, 3429 (2007).

    Google Scholar 

  31. D. Aldakov, A. Lefrançois, P. Reiss, J. Mater. Chem. C 1, 3756 (2013).

    Google Scholar 

  32. E. Kinder, P. Moroz, G. Diederich, A. Johnson, M. Kirsanova, A. Nemchinov T. O’Connor, D. Roth, M. Zamkov, J. Am. Chem. Soc. 133, 20488 (2011).

    Google Scholar 

  33. Y. Liu, M. Gibbs, C.L. Perkins, J. Tolentino, M.H. Zarghami, J. Bustamante, M. Law, Nano Lett. 11, 5349 (2011).

    Google Scholar 

  34. A. Pourret, P. Guyot-Sionnest, J.W. Elam,Adv. Mater.21, 232 (2009).

    Google Scholar 

  35. V. Wood, V. Bulović, Nano Rev.1 (2010), doi:10.3402/nano.v1i0.5202.

  36. S. Kobayashi, Y. Tani, H. Kawazoe, Jpn. J. Appl. Phys. 46, L966 (2007).

    Google Scholar 

  37. V. Wood, M.J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer M.G. Bawendi, V. Bulović, Nano Lett. 11, 2927 (2011).

    Google Scholar 

  38. V. Wood, M.J. Panzer, J.-M. Caruge, J.E. Halpert, M.G. Bawendi, V. Bulović Nano Lett. 10, 24 (2010).

    Google Scholar 

  39. V. Wood, J.E. Halpert, M.J. Panzer, M.G. Bawendi, V. Bulović, Nano Lett. 9, 2367 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Bozyigit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozyigit, D., Wood, V. Challenges and solutions for high-efficiency quantum dot-based LEDs. MRS Bulletin 38, 731–736 (2013). https://doi.org/10.1557/mrs.2013.180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.180

Navigation