Skip to main content

Advertisement

Log in

Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries

  • Ionic liquids for energy applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reports the search for nonflammable, stable electrolytes based on ionic liquid (IL) compounds, able to effectively improve the needed safety and reliability of lithium batteries. The most significant results are reviewed with the aim of elucidating critical aspects governing the properties of IL electrolytes, including (1) transport properties affecting ionic conductivity and the cycling rate of battery systems, (2) electrochemical/chemical stability toward most conventional electrode materials, and (3) thermal properties determining the range of applicability. Both liquid and polymer electrolytes, adopting ILs as the main component or as an additive to standard electrolyte solutions, are considered. Very promising results, in terms of battery prototype performances in scaled-up configurations, demonstrate the validity of the use of ILs for practical applications. Even though further improvements are necessary, particularly at high current density operations in both lithium-metal and lithium-ion systems, the realization of safer, high-performance batteries based on IL electrolytes is certainly possible. It can be concluded that ILs represent a viable solution to disappointing compromises between energy density and acceptable safety features in lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H. Sakaebe, H. Matsumoto, Electrochem. Commun. 5, 594 (2003).

    CAS  Google Scholar 

  2. M. Dollé, L. Sannier, B. Beaudoin, M. Trentin, J.-M. Tarascon, Electrochem. Solid-State Lett. 5, A286 (2002)

    Google Scholar 

  3. T. Welton, Chem. Rev. 99 2071 (1999).

    CAS  Google Scholar 

  4. D.R. MacFarlane, J. Huang, M. Forsyth, Nature 402, 792 (1999).

    CAS  Google Scholar 

  5. B. Scrosati, J. Garche, J. Power Sources 195, 2419 (2010).

    CAS  Google Scholar 

  6. W van Schalkwijk, B. Scrosati, Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, Boston, 2004).

    Google Scholar 

  7. H. Sakaebe, H. Matsumoto, K. Tatsumi, Electrochim. Acta 53, 1048 (2007).

    CAS  Google Scholar 

  8. Y. Wang, K. Zaghib, A. Guerfi, F.F.C. Bazito, R.M. Torresi, J.R. Dahn, Electro-chim. Acta 52, 6346 (2007).

    CAS  Google Scholar 

  9. A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, K. Zaghib, J. Power Sources 195, 845 (2010).

    CAS  Google Scholar 

  10. G.H. Lane, A.S. Best, D.R. MacFarlane, M. Forsyth, P.M. Bayley, A.F. Hollenkamp, Electrochim. Acta 55, 8947 (2010).

    CAS  Google Scholar 

  11. L. Larush, V. Borgel, E. Markevich, O. Haik, E. Zinigrad, D. Aurbach, G. Semrau, M. Schmidt, J. Power Sources 189, 217 (2009).

    CAS  Google Scholar 

  12. J. Fuller, A.C. Breda, R.T. Carlin, J. Electrochem. Soc. 144, L67 (1997).

    CAS  Google Scholar 

  13. S. Megahed, B. Scrosati, Interface 4, 34 (1995).

    CAS  Google Scholar 

  14. T.E. Sutto, J. Electrochem. Soc. 154, P101 (2007).

    CAS  Google Scholar 

  15. A. Fernicola, F.C. Weise, S.G. Greenbaum, J. Kagimoto, B. Scrosati, A. Soleto, J. Electrochem. Soc. 156, A514 (2009).

    CAS  Google Scholar 

  16. C. Zhu, H. Cheng, Y. Yang, J. Electrochem. Soc. 155, A569 (2008).

    CAS  Google Scholar 

  17. D.R. MacFarlane, J. Sun, M. Forsyth, P. Meakin, N. Amini, J. Phys. Chem. B 103, 4164 (1999).

    CAS  Google Scholar 

  18. G.B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, S. Passerini, Electrochim. Acta 54, 1325 (2009).

    CAS  Google Scholar 

  19. Q. Zhou, W.A. Henderson, G.B. Appetecchi, M. Montanino, S. Passerini, J. Phys. Chem. B 112, 13580 (2008).

    Google Scholar 

  20. E. Paillard, Q. Zhou, W.A. Henderson, G.B. Appetecchi, M. Montanino, S. Passerini, J. Electrochem. Soc. 156, A891 (2009).

    CAS  Google Scholar 

  21. G.-T. Kim, G.B. Appetecchi, M. Montanino, F. Alessandrini, S. Passerini, ECS Trans. 25, 127 (2010).

    CAS  Google Scholar 

  22. G.B. Appetecchi, M. Montanino, A. Balducci, S.F. Lux, M. Winter, S. Passerini, J. Power Sources 192, 599 (2009).

    CAS  Google Scholar 

  23. S.F. Lux, M. Schmuck, G.B. Appetecchi, S. Passerini, M. Winter, A. Balducci, J. Power Sources 192 606 (2009).

    CAS  Google Scholar 

  24. A. Guerfi, S. Duchesne, Y. Kobayashi, A. Vijh, K. Zaghib, J. Power Sources 175, 866 (2008).

    CAS  Google Scholar 

  25. T. Sugimoto, Y. Atsumi, M. Kikuta, E. Ishiko, M. Kono, M. Ishikawa, J. Power Sources 189, 802 (2009).

    CAS  Google Scholar 

  26. H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, M. Kono, J. Power Sources 160, 1308 (2006).

    CAS  Google Scholar 

  27. P.C. Howlett, E.I. Izgorodina, M. Forsyth, D.R. MacFarlane, Z. Phys. Chem. 220, 1483 (2006).

    CAS  Google Scholar 

  28. S. Randstroem, G.B. Appetecchi, C. Lagergren, A. Moreno, S. Passerini, Electrochim. Acta 53, 1837 (2007).

    CAS  Google Scholar 

  29. S. Randstroem, M. Montanino, G.B. Appetecchi, C. Lagergren, A. Moreno, S. Passerini, Electrochim. Acta 53, 6397 (2008).

    CAS  Google Scholar 

  30. M. Holzapfel, C. Jost, P. Novak, Chem. Commun. 10, 2098 (2004).

    Google Scholar 

  31. W.A. Henderson, S. Passerini, Chem. Mater. 16, 2881 (2004).

    CAS  Google Scholar 

  32. M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, J. Power Sources 162, 658 (2006).

    CAS  Google Scholar 

  33. G.-T. Kim, S.S. Jeong, M.-Z. Xue, A. Balducci, M. Winter, S. Passerini, F. Alessandrini, G.B. Appetecchi, J. Power Sources 199, 239 (2012).

    CAS  Google Scholar 

  34. P.M. Bayley, A.S. Best, D.R. MacFarlane, M. Forsyth, ChemPhysChem 12, 823 (2011).

    CAS  Google Scholar 

  35. A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno, J. Power Sources 174, 342 (2007).

    CAS  Google Scholar 

  36. J. Hassoun, A. Fernicola, M.A. Navarra, S. Panero, B. Scrosati, J. Power Sources 195, 574 (2010).

    CAS  Google Scholar 

  37. A. Martinelli, A. Matic, P. Jacobsson, L. Borjesson, A. Fernicola, B. Scrosati, J. Phys. Chem. B 113, 11247 (2009).

    CAS  Google Scholar 

  38. K.J. Fraser, E.I. Izgorodina, M. Forsyth, J.L. Scott, D.R. MacFarlane, Chem. Commun. 37, 3817 (2007).

    Google Scholar 

  39. L.J. Hardwick, M. Holzapfel, A. Wokaun, P. Novak, J. Raman Spectrosc. 38, 110 (2007).

    CAS  Google Scholar 

  40. J.-A. Choi, S.-M. Eo, D.R. MacFarlane, M. Forsyth, E. Cha, D.-W. Kim, J. Power Sources 178, 832 (2008).

    CAS  Google Scholar 

  41. D. Nama, P.G.A. Kumar, P.S. Pregosin, T.J. Geldbach, P.J. Dyson, Inorg. Chim. Acta 359, 1907 (2006).

    CAS  Google Scholar 

  42. P.M. Bayley, G.H. Lane, N.M. Rocher, B.R. Clare, A.S. Best, D.R. MacFarlane, M. Forsyth, Phys. Chem. Chem. Phys. 11, 7202 (2009).

    CAS  Google Scholar 

  43. A. Lewandowski, A. Swiderska-Mocek, J. Power Sources 194, 502 (2009).

    CAS  Google Scholar 

  44. L. Damen, M. Lazzari, M. Mastragostino, J. Power Sources 196, 8692 (2011).

    CAS  Google Scholar 

  45. L. Lombardo, S. Brutti, M.A. Navarra, S. Panero, P. Reale, J. Power Sources 227, 8 (2013).

    CAS  Google Scholar 

  46. A. Tsurumaki, M.A. Navarra, S. Panero, B. Scrosati, H. Ohno, J. Power Sources 233, 104 (2013).

    CAS  Google Scholar 

  47. C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sources 196, 4801 (2011).

    CAS  Google Scholar 

  48. K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, J. Electrochem. Soc. 149, A622 (2002).

    CAS  Google Scholar 

  49. J.M. Tarascon, M. Armand, Nature 414, 359 (2001).

    CAS  Google Scholar 

  50. J.-H. Shin, W.A. Henderson, S. Passerini, Electrochem. Commun. 5, 1016 (2003).

    CAS  Google Scholar 

  51. J.-H. Shin, W.A. Henderson, S. Passerini, Electrochem. Solid-State Lett. 8, A125 (2005).

    CAS  Google Scholar 

  52. J.-H. Shin, W.A. Henderson, G.B. Appetecchi, F. Alessandrini, S. Passerini, Electrochim. Acta 50, 3859 (2005).

    CAS  Google Scholar 

  53. G.B. Appetecchi, G.T. Kim, M. Montanino, F. Alessandrini, S. Passerini, J. Power Sources 196, 6703 (2011).

    CAS  Google Scholar 

  54. A. Balducci, S.S. Jeong, G.T. Kim, S. Passerini, M. Winter, M. Schmuck, G.B. Appetecchi, R. Marcilla, D. Mecerreyes, V. Barsukov,V. Khomenko, I. Cantero, I. De Meatza, M. Holzapfel, N. Tran, J. Power Sources 196, 9719 (2011).

    CAS  Google Scholar 

  55. J. Fuller, A.C. Breda, R.T. Carlin, J. Electroanal. Chem. 459, 29 (1998).

    CAS  Google Scholar 

  56. K.-S. Kim, S.Y. Park, S. Choi, H. Lee, J. Power Sources 155, 385 (2006).

    CAS  Google Scholar 

  57. C. Sirisopanaporn, A. Fernicola, B. Scrosati, J. Power Sources 186, 490 (2009).

    CAS  Google Scholar 

  58. H. Ye, J. Huang, J.J. Xu, A. Khalfan, S.G. Greenbaum, J. Electrochem. Soc. 154, A1048 (2007).

    CAS  Google Scholar 

  59. S.R. Sivakkumar, D.R. MacFarlane, M. Forsyth, D.-W. Kim, J. Electrochem. Soc. 154, A834 (2007).

    CAS  Google Scholar 

  60. M.A. Navarra, J. Manzi, L. Lombardo, S. Panero, B. Scrosati, ChemSusChem 4, 125 (2011).

    CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Profs. Stefania Panero and Bruno Scrosati for their guidance. Fruitful collaborations with Profs. Steve Greenbaum, Aleksandar Matic, and Hiroyuki Ohno addressing the research in the field of ILs for lithium batteries and contributing to informing the author on this topic are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Assunta Navarra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarra, M.A. Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. MRS Bulletin 38, 548–553 (2013). https://doi.org/10.1557/mrs.2013.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.152

Navigation