Skip to main content

Advertisement

Log in

Rise of the sustainable circular economy platform from waste plastics: A biotechnological perspective

  • Perspective
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

The circular economy aspects of PET (polyethylene terephthalate) waste conversion into value-added products are discussed concerning different governmental policies and industrial protocol for plastic degradation.

The use of microbial enzymes such as PET hydrolase is discussed regarding PET (polyethylene terephthalate) degradation.

The primary purpose of this perspective is a critical analysis of the correlation of the current state-of-the-art rising circular economy platform enacted across the world with close looping of PET (polyethylene terephthalate)-based plastic polymer disposal and sustainable recycling and upcycling technology. The goal of the upcycling process is to get the low-cost value-added monomer than those obtained from the hydrocarbon industry from the sustainability prospect. A summary of the circular bio-economic opportunities has also been described. Next, how the PET hydrolase enzyme degrades the PET plastic is discussed. It is followed by an additional overview of the effect of the mutant enzyme for converting 90% of plastics into the terephthalate monomer. A site-directed mutagenesis procedure obtains this particular mutant enzyme. The diversity of different microbial organism for producing PET hydrolase enzyme is finally discussed with a suggested outlook of the circular economy goal from the viewpoint of plastic degradation objectives soon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  1. Mancia A., Chenet T., Bono G., Geraci M.L., Vaccaro C., Munari C., Mistri M., Cavazzini A., and Pasti L.: Adverse effects of plastic ingestion on the Mediterranean small-spotted catshark (Scyliorhinus canicula). Mar. Environ. Res. 155, 104876 (2020). doi:10.1016/j.marenvres.2020.104876.

    CAS  Google Scholar 

  2. Hale R.C., Seeley M.E., La Guardia M.J., Mai L., and Zeng E.Y.: A global perspective on microplastics. J. Geophys. Res. Oceans 125 (2020). doi:10.1029/2018JC014719.

  3. Chen H., Wang Y., Sun X., Peng Y., and Xiao L.: Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243, 125271 (2020). doi:10.1016/j.chemosphere.2019.125271.

    CAS  Google Scholar 

  4. Cortés C., Domenech J., Salazar M., Pastor S., Marcos R., and Hernández A.: Nanoplastics as a potential environmental health factor: Effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ. Sci. Nano 7, 272–285 (2020). doi:10.1039/c9en00523d.

    Google Scholar 

  5. Shirvanimoghaddam K., Motamed B., Ramakrishna S., and Naebe M.: Death by waste: Fashion and textile circular economy case. Sci. Total Environ. 718, 137317 (2020). doi:10.1016/j.scitotenv.2020.137317.

    CAS  Google Scholar 

  6. Vollmer I., Jenks M.J.F., Roelands M.C.P., White R.J., van Harmelen T., de Wild P., van der Laane G.P., Meirera F., Keurentjes J.T.F., and Weckhuysen B.M.: Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem. Int. Ed. doi: 10.1002/anie.201915651.

  7. Sheldon R.A.: Green chemistry and resource efficiency: Towards a green economy. Green Chem. 18, 3180–3183 (2016). doi:10.1039/c6gc90040b.

    CAS  Google Scholar 

  8. Gomollón-bel F.: Ten chemical innovations that will change our world. Chem. Int. 41, 12–17 (2019).

    Google Scholar 

  9. Ellen MacArthur Foundation: EMF CE100 US Launch and Sunpower Story (2016). Available at: https://www.ellenmacarthurfoundation.org/assets/downloads/CE100_US_Launch_310316_slides_v1.pdf (accessed May 30, 2020).

    Google Scholar 

  10. Punnett G.: A PET Circular Economy for the City of Phoenix (ASU Digital Repository, 2018); pp. 1–31. Available at www.repository.asu.edu.

    Google Scholar 

  11. Carr A., Fetherston E., Makled T., and Meyer L.: Towards a Circular Plastics Economy: Policy Solutions for Closing the Loop on Plastics (2019); pp. 1–105. Retrieved from: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/148831/Towards%20a%20Circular%20Plastics%20Economy%20-%20Policy%20Solutions%20for%20Closing%20the%20Loop%20on%20Plastics_01.pdf?sequence=1&isAllowed=y (accessed May 30, 2020).

    Google Scholar 

  12. Bales C. and Hull E.: Integrating Circular Economy for PET Plastic at Duke University’ s Fuqua School of Business (Duke University, 2019). Available at: www.dukespace.duke.lib.edu.

    Google Scholar 

  13. European Commission: A European strategy for plastics. European Commission 24 (2018). doi:10.1021/acs.est.7b02368.

  14. SusChem: Innovation Agenda in a Circular Economy Research and Innovation Agenda in a Circular Economy. (Suchem, 2018). www.suschem.org.

    Google Scholar 

  15. Zamparutti T., Mcneill A., Moora H., Jõe M., and Piirsalu E.: Circular economy with focus on waste, renewable energy and sustainable bioenergy in Estonia. Policy Department A: Economy and Scientific Policy and Quality of Life Policies European (2017). doi:10.2861/066918.

    Google Scholar 

  16. Sørumsbrenden J.: Transitioning to a Circular Plastics Economy. A suggestion of indicators for a circular plastics, Master’s thesis (Norwegian University of Science and Technology, 2019). www.ntnuopen.ntnu.no.no.ntnu:inspera:2539904.pdf.

    Google Scholar 

  17. Welle F.: Circular economy–Considerations on PET recycling. Verpack. Rundsch. 4, 56–58 (2019).

    Google Scholar 

  18. Peake L.: Plastic Waste in the United Kingdom. Plastic Waste and Recycling (Elsevier Inc, 2020). doi:10.1016/b978-0-12-817880-5.00023-2.

    Google Scholar 

  19. Mathews J. A. and Tan H. Progress toward a circular economy in China: The drivers (and inhibitors) of the eco-industrial initiative. J. Ind. Ecol. 15, 435–457 (2011).

    Google Scholar 

  20. Kalmykova Y., Sadagopan M., and Rosado L.: Circular economy–From the review of theories and practices to the development of implementation tools. Resour. Conserv. Recycl. 135, 190–201 (2018). doi:10.1016/j.resconrec.2017.10.034.

    Google Scholar 

  21. Payne J., McKeown P., and Jones M.D.: A circular economy approach to plastic waste. Polym. Degrad. Stabil. 165, 170–181 (2019). doi:10.1016/j.polymdegradstab.2019.05.014.

    CAS  Google Scholar 

  22. Shonnard D., Tipaldo E., Thompson V., Pearce J., Caneba G., and Handler R.: Systems analysis for PET and olefin polymers in a circular economy. Procedia CIRP 80, 602–606 (2019). doi:10.1016/j.procir.2019.01.072.

    Google Scholar 

  23. Chen T.L., Kim H., Pan S.Y., Tseng P.C., Lin Y.P., and Chiang P.C.: Implementation of green chemistry principles in the circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total Environ. 716, 136998 (2020). doi:10.1016/j.scitotenv.2020.136998.

    CAS  Google Scholar 

  24. To M.H., Uisan K., Ok Y.S., Pleissner D., and Lin C.S.K.: Recent trends in green and sustainable chemistry: Rethinking textile waste in a circular economy. Curr. Opin. Green Sustain. Chem. 20, 1–10 (2019). doi:10.1016/j.cogsc.2019.06.002.

    Google Scholar 

  25. Ozola Z.U., Vesere R., Kalnins S.N., and Blumberg D.: Paper waste recycling. circular economy aspects. Environ. Clim. Technol. 23, 260–273 (2019). doi:10.2478/rtuect-2019-0094.

    CAS  Google Scholar 

  26. Gitelman L., Magaril E., Kozhevnikov M., and Rada E.C.: Rational behavior of an enterprise in the energy market in a circular economy. Resources 8 (2019). doi:10.3390/resources8020073.

  27. Cousins F., Broyles Yost T., and Bender G.: Think circular—Reducing embodied carbon through materials selection. MRS Energy Sustain. 5, 2018–2021 (2018). doi:10.1557/mre.2018.3.

    Google Scholar 

  28. Maina S., Kachrimanidou V., and Koutinas A.: A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 8, 18–23 (2017). doi:10.1016/j.cogsc.2017.07.007.

    Google Scholar 

  29. Nizami A.S., Rehan M., Waqas M., Naqvi M., Ouda O.K.M., Shahzad K., Miandad R., Khan M.Z., Syamsiro M., Ismail I.M.I., and Pant D.: Waste biorefineries: Enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117 (2017). doi:10.1016/j.biortech.2017.05.097.

    CAS  Google Scholar 

  30. Venkata Mohan S., Nikhil G.N., Chiranjeevi P., Nagendranatha Reddy C., Rohit M.V., Kumar A.N., and Sarkar O.: Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 215, 2–12 (2016). doi:10.1016/j.biortech.2016.03.130.

    Google Scholar 

  31. Paul S.C. and Paul S.: Biowaste to Bio-products through Hybrid Thermochemical and Biochemical Conversion: A Circular Economy Concept (2017). Available at: https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/11564/Paul_Subhash_201709_PhD.pdf?sequence=1&isAllowed=y.

    Google Scholar 

  32. Bell J., Paula L., Dodd T., Németh S., Nanou C., Mega V., and Campos P.: EU ambition to build the world's leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 40, 25–30 (2018). doi:10.1016/j.nbt.2017.06.010.

    CAS  Google Scholar 

  33. Aguilar A., Twardowski T., and Wohlgemuth R.: Bioeconomy for sustainable development. Biotechnol. J. 14, 1–11 (2019). doi:10.1002/biot.201800638.

    Google Scholar 

  34. Meyer V., Basenko E.Y., Benz J.P., Braus G.H., Caddick M.X., Csukai M., de Vries R.P., Endy D., Frisvad J.C., Gunde-Cimerman N., Haarmann T., Hadar Y., Hansen K., Johnson R.I., Keller N.P., Kraševec N., Mortensen U.H., Perez R., Ram A.F.J., Record E., Ross P., Shapaval V., Steiniger C., van den Brink H., van Munster J., Yarden O., and Wösten H.A.B.: Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 7, 1–23 (2020). doi:10.1186/s40694-020-00095-z

    Google Scholar 

  35. Blank L.M., Narancic T., Mampel J., Tiso T., and O'Connor K.: Biotechnological upcycling of plastic waste and other non-conventional feedstocks in a circular economy. Curr. Opin. Biotechnol. 62, 212–219 (2020). doi:10.1016/j.copbio.2019.11.011.

    CAS  Google Scholar 

  36. Allen R.D.: Waste PET: A renewable resource. Joule 3, 910 (2019). doi:10.1016/j.joule.2019.04.002.

    Google Scholar 

  37. Britt P., Byers J., Chen E., Coates G., Coughlin B., Ellison C., Garcia J., Goldman A., Guzman J., Hartwig J., Helms B., Huber G., Jenks C., Martin J., McCann M., Miller S., O'Neill H., Sadow A., Scott S., Sita L., Vlachos D., Winey K., and Waymouth R.: Basic Energy Sciences Roundtable: Chemical Upcycling of Polymers (2019). Available at: https://winey.seas.upenn.edu/wp-content/uploads/2017/08/2019_DOE_Polymer_Upcycling_Brochure.pdf.

    Google Scholar 

  38. Rorrer N.A., Nicholson S., Carpenter A., Biddy M.J., Grundl N.J., and Beckham G.T.: Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019). doi:10.1016/j.joule.2019.01.018.

    CAS  Google Scholar 

  39. Wierckx N., Prieto M.A., Pomposiello P., de Lorenzo V., O'Connor K., and Blank L.M.: Plastic waste as a novel substrate for industrial biotechnology. Microb. Biotechnol. 8, 900–903 (2015). doi:10.1111/1751-7915.12312.

    Google Scholar 

  40. Ganesh Kumar A., Anjana K., Hinduja M., Sujitha K., and Dharani G.: Review on plastic wastes in the marine environment–Biodegradation and biotechnological solutions. Mar. Pollut. Bull. 150, 110733 (2020). doi:10.1016/j.marpolbul.2019.110733.

    Google Scholar 

  41. Bombelli P., Howe C.J., and Bertocchini F.: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 27, R292–R293 (2017). doi:10.1016/j.cub.2017.02.060.

    CAS  Google Scholar 

  42. Paço A., Jacinto J., da Costa J.P., Santos P.S.M., Vitorino R., Duarte A.C., and Rocha-Santos T.: Biotechnological tools for the effective management of plastics in the environment. Crit. Rev. Environ. Sci. Technol. 49, 410–441 (2019). doi:10.1080/10643389.2018.1548862.

    Google Scholar 

  43. Wang P., Sergeeva M.V., Lim L., and Dordick J.S.: Biocatalytic plastics as active and stable materials for biotransformations. Nat. Biotechnol. 15, 789–793 (1997). doi:10.1038/nbt0897-789.

    CAS  Google Scholar 

  44. Chen H., Dong F., and Minteer S.D.: The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat. Catal. 3, 225–244 (2020). doi:10.1038/s41929-019-0408-2.

    Google Scholar 

  45. Pellis A., Herrero Acero E., Ferrario V., Ribitsch D., Guebitz G.M., and Gardossi L.: The closure of the cycle: Enzymatic synthesis and functionalization of bio-based polyesters. Trends Biotechnol. 34, 316–328 (2016). doi:10.1016/j.tibtech.2015.12.009.

    CAS  Google Scholar 

  46. Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y., Toyohara K., Miyamoto K., Kimura Y., and Oda K.: A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016). doi:10.1126/science.aad6359.

    CAS  Google Scholar 

  47. Bao R., He L.H., and Liu B.: Enzymatic and structural characterization of the poly(ethylene terephthalate) hydrolase PETase from I. sakaiensis (2018). doi:10.2210/pdb5yfe/pdb.

    Google Scholar 

  48. Hess M., Sczyrba A., Egan R., Kim T., Chokhawala H., Schroth G., Luo S., Clark D.S., Chen F., Zhang T., Mackie R.I., Pennacchio L.A., Tringe S.G., Visel A., Woyke T., Wang Z., and Rubin E.M.: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011). doi:10.1126/science.1200387.

    CAS  Google Scholar 

  49. Danso D., Chow J., and Streita W.R.: Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol. 85, 1–14 (2019).

    Google Scholar 

  50. Sheth M.U., Kwartler S.K., Schmaltz E.R., Hoskinson S.M., Martz E.J., Dunphy-Daly M.M., Schultz T.F., Edward W.C., Read A.J., and Somarelli J.A.: Bioengineering a future free of marine plastic waste. Front. Mar. Sci. 6, 1–10 (2019). doi:10.3389/fmars.2019.00624.

    Google Scholar 

  51. Service R.: 'A huge step forward.' The mutant enzyme could vastly improve recycling of plastic bottles. Science 19 (2020). doi:10.1126/science.abc1556.

  52. Tournier V., Topham C.M., Gilles A., David B., Folgoas C., Moya-Leclair E., Kamionka E., Desrousseaux M.-L., Texier H., Gavalda S., Cot M., Guémard E., Dalibey M., Nomme J., Cioci G., Barbe S., Chateau M., André I., Duquesne S., and Marty A.: An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020). doi:10.1038/s41586-020-2149-4.

    CAS  Google Scholar 

  53. Chen Z., Wang Y., Cheng Y., Wang X., Tong S., Yang H., and Wang Z.: Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci. Total Environ. 709, 136138 (2020). doi:10.1016/j.scitotenv.2019.136138.

    CAS  Google Scholar 

  54. de Castro A.M. and Carniel A.: A novel process for poly(ethylene terephthalate) depolymerization via enzyme-catalyzed glycolysis. Biochem. Eng. J. 124, 64–68 (2017). doi:10.1016/j.bej.2017.04.011.

    Google Scholar 

  55. Papadopoulou A., Hecht K., and Buller R.: Enzymatic PET degradation. Chimia 73, 743–749 (2019). doi:10.2533/chimia.2019.743.

    CAS  Google Scholar 

  56. Littlechild J.A.: Improving the ‘tool box’ for robust industrial enzymes. J. Ind. Microbiol. Biotechnol. 44, 711–720 (2017). doi:10.1007/s10295-017-1920-5.

    CAS  Google Scholar 

  57. Bhardwaj H., Gupta R., and Tiwari A.: Communities of microbial enzymes associated with biodegradation of plastics. J. Polym. Environ. 21, 575–579 (2013). doi:10.1007/s10924-012-0456-z.

    CAS  Google Scholar 

  58. Salvador M., Abdulmutalib U., Gonzalez J., Kim J., Smith A.A., Faulon J.L., Wei R., Zimmermann W., and Jimenez J.I.: Microbial genes for a circular and sustainable bio-PET economy. Genes 10, 1–15 (2019). doi:10.3390/genes10050373.

    Google Scholar 

  59. Shinozaki Y., Morita T., Cao X.H., Yoshida S., Koitabashi M., Watanabe T., Suzuki K., Sameshima- Yamashita Y., Nakajima-Kambe T., Fujii T., and Kitamoto H.K.: Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: Cloning, sequencing, and characterization. Appl. Microbiol. Biotechnol. 97, 2951–2959 (2013). doi:10.1007/s00253-012-4188-8.

    CAS  Google Scholar 

  60. Espinosa M.J.C., Blanco A.C., Schmidgall T., Atanasoff-Kardjalieff A.K., Kappelmeyer U., Tischler D., Pieper D.H., Heipieper H.J., and Eberlein C.: Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front. Microbiol. 11 (2020). doi:10.3389/fmicb.2020.00404.

  61. Ji J., Zhang Y., Liu Y., Zhu P., and Yan X.: Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4. Environ. Pollut. 258, 113793 (2020). doi:10.1016/j.envpol.2019.113793.

    CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges the funding received from JU management start-up grant: 11(39)/17/004/2017SG to carry out this manuscript work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajeet K. Bora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bora, D.K. Rise of the sustainable circular economy platform from waste plastics: A biotechnological perspective. MRS Energy & Sustainability 7, 28 (2020). https://doi.org/10.1557/mre.2020.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.28

Keywords

Navigation