Skip to main content
Log in

3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A simple and facile stereolithography 3D printing technique was utilized to fabricate piezoelectric photopolymer-based polyvinylidene fluoride (PVDF) blends. Different process variables, such as solvent (N,N-dimethylformamide, DMF) to PVDF ratio and PVDF solution to photopolymer resin (PR) ratio, were engineered to enhance the dispersion of the PVDF into the PR so as to achieve the maximum piezoelectric coupling coefficient. Our results demonstrate that a ratio of 1:10 (PVDF:DMF) and 2 wt%-PVDF/PR was optimal for the best dissolution of the PVDF, 3D printability, and piezoelectric properties. Under these conditions, the blend generated ±0.121 nA under 80 N dynamic loading excitation. We believe that the findings of this work would promote many further studies on the mass production of flexible piezoelectric polymer blends with higher quality finished surface and design flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. H. Kawai: The piezoelectricity of poly (vinylidene fluoride). Jpn J. Appl. Phys. 8, 975 (1969).

    Article  CAS  Google Scholar 

  2. A.J. Lovinger: Poly (Vinylidene Fluoride). Developments in Crystalline Polymers—1 (Applied Science Publisher, London, UK, 1982), pp. 195–273.

    Book  Google Scholar 

  3. E. Fukada: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277–1290 (2000).

    Article  CAS  Google Scholar 

  4. Y. Ye, Y. Jiang, Z. Wu, and H. Zeng: Phase transitions of poly (vinylidene fluoride) under electric fields. Integr. Ferroelectr. 80, 245–251 (2006).

    Article  CAS  Google Scholar 

  5. P. Sajkiewicz, A. Wasiak, and Z. Gocłowski: Phase transitions during stretching of poly (vinylidene fluoride). Eur. Polym. J. 35, 423–429 (1999).

    Article  CAS  Google Scholar 

  6. A. Salimi and A. Yousefi: Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22, 699–704 (2003).

    Article  CAS  Google Scholar 

  7. H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L.B. Tseng: 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications. Macromol. Mater. Eng. 302, 1700229 (2017).

    Article  CAS  Google Scholar 

  8. J. Granstrom, J. Feenstra, H.A. Sodano, and K. Farinholt: Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 16, 1810 (2007).

    Article  CAS  Google Scholar 

  9. A. Chiolerio, M. Lombardi, A. Guerriero, G. Canavese, S. Stassi, R. Gazia, et al.: Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. J.Mater. Sci. 48, 6943–6951 (2013).

    Article  CAS  Google Scholar 

  10. H. Kim, T. Fernando, M. Li, Y. Lin, and T.-L.B. Tseng: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J.Compos. Mater 52(2), 197–206 (2017). 10.1177/0021998317704709.

    Article  CAS  Google Scholar 

  11. T. Kaura, R. Nath, and M. Perlman: Simultaneous stretching and corona poling of PVDF films. J.Phys. D Appl. Phys. 24, 1848 (1991).

    Article  CAS  Google Scholar 

  12. D. Sun, C. Chang, S. Li, and L. Lin: Near-field electrospinning. Nano Lett. 6, 839–842 (2006).

    Article  CAS  Google Scholar 

  13. H. Kim, F. Torres, M.T. Islam, M.D. Islam, L.A. Chavez, C.A. Garcia Rosales, et al.: Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fuseddeposition modeling three-dimensional printing. MRS Commun., 1–7 (2017).

  14. H. Kim, T. Fernando, M. Li, Y. Lin, and T.-L.B. Tseng: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J.Compos. Mater. 52, 197–206 (2018).

    Article  CAS  Google Scholar 

  15. K. Kim, W. Zhu, X. Qu, C. Aaronson, W.R. McCall, S. Chen, et al.: 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8, 9799–9806 (2014).

    Article  CAS  Google Scholar 

  16. H. Kim, F. Torres, Y. Wu, D. Villagran, Y. Lin, and T.-L.B. Tseng: Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26, 085027 (2017).

    Article  Google Scholar 

  17. H. Kim, J. Johnson, L.A. Chavez, C.A.G. Rosales, T.-L.B. Tseng, and Y. Lin: Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram. Int. 44, 9037–9044 (2018).

    Article  CAS  Google Scholar 

  18. S. Bodkhe, G. Turcot, F.P. Gosselin, and D. Therriault: One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interface. 9, 20833–20842 (2017).

    Article  CAS  Google Scholar 

  19. M. Vaezi, S. Chianrabutra, B. Mellor, and S. Yang: Multiple material additive manufacturing–Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virt. Phys. Prototyping 8, 19–50 (2013).

    Article  Google Scholar 

  20. X. Song: Slurry Based Stereolithography: A Solid Freeform Fabrication Method of Ceramics and Composites (University of Southern California Libraries, University of Southern California, 2016).

    Google Scholar 

  21. J.W. Stansbury and M.J. Idacavage: 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32, 54–64 (2016).

    Article  CAS  Google Scholar 

  22. J.R.C. Dizon, A.H. Espera Jr, Q. Chen, and R.C. Advincula: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018).

    CAS  Google Scholar 

  23. C.W. Hull. Apparatus for production of three-dimensional objects by stereolithography. Google Patents, 1986.

    Google Scholar 

  24. M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi: 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28, 4449–4454 (2016).

    Article  CAS  Google Scholar 

  25. Polyvinylidene fluoride: Wikipedia: https://en.wikipedia.org/wiki/Polyvinylidene_fluoride (cited 1 December 2019).

    Google Scholar 

  26. F. Liu, N.A. Hashim, Y. Liu, M.M. Abed, and K. Li: Progress in the production and modification of PVDF membranes. J.Membr. Sci. 375, 1–27 (2011).

    Article  CAS  Google Scholar 

  27. H. Kim, M.A.I. Shuvo, H. Karim, J.C. Noveron, T.-L Tseng, and Y. Lin: Synthesis and characterization of CeO2 nanoparticles on porous carbon for Li-ion battery. MRS Adv. 2, 3299–3307 (2017).

    Article  CAS  Google Scholar 

  28. H. Kim, M.A.I. Shuvo, H. Karim, M.I. Nandasiri, A.M. Schwarz, M. Vijayakumar, et al.: Porous carbon/CeO2 nanoparticles hybrid material for high-capacity super-capacitors. MRS Adv. 2, 2471–2480 (2017).

    Article  CAS  Google Scholar 

  29. E. Žagar and M. Žigon: Solution properties of carboxylated polyurethanes and related ionomers in polar solvents (DMF and LiBr/DMF). Polymer 41, 3513–3521 (2000).

    Article  Google Scholar 

  30. Y. Cai and J.L. Jessop: Photopolymerization, Free Radical. (Encyclopedia of Polymer Science and Technology, 2004).

    Book  Google Scholar 

  31. S. Inceoglu, S.C. Olugebefola, M.H. Acar, and A.M. Mayes: Atom transfer radical polymerization using poly (vinylidene fluoride) as macroinitiator. Des. Monomers Polym. 7, 181–189 (2004).

    Article  CAS  Google Scholar 

  32. D. Zhang and X. Yang: Precipitation polymerization. In Encyclopedia of Polymeric Nanomaterials, edited by S. Kobayashi, and K. Müllen. (Springer, Berlin/Heidelberg, 2021) pp. 1–10.

    Google Scholar 

  33. D. Wang, K. Li, and W. Teo: Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J.Membr. Sci. 178, 13–23 (2000).

    Article  CAS  Google Scholar 

  34. X. Cai, T. Lei, D. Sun, and L. Lin: A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 7, 15382–15389 (2017).

    Article  CAS  Google Scholar 

  35. D. Mandal, K. Henkel, and D. Schmeißer: The electroactive β-phase formation in Poly (vinylidene fluoride) by gold nanoparticles doping. Mater. Lett. 73, 123–125 (2012).

    Article  CAS  Google Scholar 

  36. B.S. Ince-Gunduz, R. Alpern, D. Amare, J. Crawford, B. Dolan, S. Jones, et al.: Impact of nanosilicates on poly (vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling. Polymer 51, 1485–1493 (2010).

    Article  CAS  Google Scholar 

  37. M.A. Ishtiaque Shuvo, G. Rodriguez, M.T. Islam, H. Karim, N. Ramabadran, J.C. Noveron, et al.: Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performance lithium ion battery. J.Appl. Phys. 118, 125102 (2015).

    Article  CAS  Google Scholar 

  38. M.T. Islam, C. Hernandez, M.A. Ahsan, A. Pardo, H. Wang, and J.C. Noveron: Sulfonated resorcinol-formaldehyde microspheres as highcapacity regenerable adsorbent for the removal of organic dyes from water. J.Environ. Chem. Eng. 5, 5270–5279 (2017).

    Article  CAS  Google Scholar 

  39. S. Pal, M.T. Islam, J.T. Moore, J. Reyes, A. Pardo, A. Varela-Ramirez, et al.: Self-assembly of a novel Cu(II) coordination complex forms metallo-vesicles that are able to transfect mammalian cells. New J. Chem. 41, 11230–11237 (2017).

    Article  CAS  Google Scholar 

  40. M. Biswas, J.A. Libera, S.B. Darling, and J.W. Elam: Kinetics for the sequential infiltration synthesis of alumina in poly (methyl methacrylate): an infrared spectroscopic study. J.Phy. Chem. C 119, 14585–14592 (2015).

    Article  CAS  Google Scholar 

  41. G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang: Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res. Lett. 3, 118 (2008).

    Article  CAS  Google Scholar 

  42. H. Bai, X. Wang, Y. Zhou, and L. Zhang: Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nanocrystalline cellulose. Prog. Nat. Sci. Mater. Int. 22, 250–257 (2012).

    Article  Google Scholar 

  43. A. Vinogradov and F. Holloway: Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226, 169–181 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation (NSF) under NSF-PREM Grant No. DMR-1205302 and partially supported by the National Science Foundation (DUE-TUES-1246050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoejin Kim.

Supplementary material Data

Supplementary material Data

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2019.109|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Manriquez, L.C.D., Islam, M.T. et al. 3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique. MRS Communications 9, 1115–1123 (2019). https://doi.org/10.1557/mrc.2019.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.109

Navigation