Skip to main content
Log in

Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Robust superhydrophobic surfaces can improve the performance of various applications. Considerable research has focused on developing superhydrophobic surfaces, but in these studies, superhydrophobicity was attained using polymeric materials, which deteriorate under harsh environments. Recently, it has been shown that rare-earth oxide ceramics are hydrophobic and since they are ceramics, they withstand harsh environments including high temperature. Here we fabricate a superhydrophobic surface by texturing a ceria pellet using laser ablation. We demonstrate water repellency by showing an impinging water droplet bouncing off the surface. This study extends the possibility of producing robust superhydrophobic ceramics using accessible techniques for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. D. Quere: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71 (2008).

    Article  CAS  Google Scholar 

  2. X. Feng and L. Jiang: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063 (2006).

    Article  CAS  Google Scholar 

  3. H. Rathgen and F. Mugele: Microscopic shape and contact angle measurement at a superhydrophobic surface. Faraday Discuss. 146, 49 (2010).

    Article  CAS  Google Scholar 

  4. L. Bocquet and E. Lauga: A smooth future? Nat. Mater. 10, 334 (2011).

    Article  CAS  Google Scholar 

  5. X. Deng, L. Mammen, H.J. Butt, and D. Vollmer: Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67 (2012).

    Article  CAS  Google Scholar 

  6. C.J. Bird, R. Dhiman, H.M. Kwon, and K.K. Varanasi: Reducing the contact time of a bouncing drop. Nature 503, 385 (2013).

    Article  CAS  Google Scholar 

  7. S. Srinivasan, W. Choi, K.C. Park, S.S. Chhatre, R.E. Cohen, and G.H. McKinley: Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter 9, 5691 (2013).

    Article  CAS  Google Scholar 

  8. I.U. Vakarelski, N.A. Patankar, J.O. Marston, D.Y.C. Chan, and S.T. Thoroddsen: Stabilization of leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274 (2012).

    Article  CAS  Google Scholar 

  9. B. Bhushan and Y.C. Jung: Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1 (2011).

    Article  CAS  Google Scholar 

  10. N.J. Shirtcliffe, G. McHale, M.I. Newton, and Y. Zhang: Superhydrophobic copper tubes with possible flow enhancement and drag reduction. ACS Appl. Mater. Interfaces 1, 1316 (2009).

    Article  CAS  Google Scholar 

  11. T. Maitra, M.K. Tiwari, C. Antonini, P. Schoch, S. Jung, P. Eberle, and D. Poulikakos: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14, 172 (2014).

    Article  CAS  Google Scholar 

  12. P. Eberle, M.K. Tiwari, T. Maitra, and D. Poulikakos: Rational nanostruc-turing of surfaces for extraordinary icephobicity. Nanoscale 6, 4874 (2014).

    Article  CAS  Google Scholar 

  13. P. Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, and L. Jiang: Icephobic/ anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 2642 (2012).

    Article  CAS  Google Scholar 

  14. C. Antonini, M. Innocenti, T. Horn, M. Marengo, and A. Amirfazli: Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 67, 58 (2011).

    Article  Google Scholar 

  15. L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, and J. Aizenberg: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699 (2010).

    Article  CAS  Google Scholar 

  16. A.J. Meuler, G.H. McKinley, and R.E. Cohen: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048 (2010).

    Article  CAS  Google Scholar 

  17. J. Lv, Y. Song, L. Jiang, and J. Wang: Bio-inspired strategies for anti-icing. ACS Nano 8, 3152 (2014).

    Article  CAS  Google Scholar 

  18. S. Jung, M. Dorrestijn, D. Raps, A. Das, C.M. Megaridis and D. Poulikakos: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059 (2011).

    Article  CAS  Google Scholar 

  19. D. Torresin, M.K. Tiwari D. Del Col, and D. Poulikakos: Flow condensation on copper-based nanotextured superhydrophobic surfaces. Langmuir 29, 840 (2013).

    Article  CAS  Google Scholar 

  20. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E.N. Wang: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179 (2013).

    Article  CAS  Google Scholar 

  21. S. Anand, A.T. Paxson, R. Dhiman, J.D. Smith, and K.K. Varanasi: Enhanced condensation on lubricant- impregnated nanotextured surfaces. ACS Nano 6, 10122 (2012).

    Article  CAS  Google Scholar 

  22. N.A. Patankar: Supernucleating surfaces for nucleate boiling and drop-wise condensation heat transfer. Soft Matters, 1613 (2010).

  23. C. Dietz, K. Rykaczewski, A.G. Fedorov, and Y. Joshi: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl. Phys. Lett. 97, 033104 (2010).

    Article  CAS  Google Scholar 

  24. R.D. Narhe, M.D. Khandkar, P.B. Shelke, A.V. Limaye, and D.A. Beysens: Condensation-induced jumping water drops. Phys. Rev. E 80, 031604 (2009).

    Article  CAS  Google Scholar 

  25. J.B. Boreyko and C.H. Chen: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

    Article  CAS  Google Scholar 

  26. C. Dorrer and J. Riihe: Condensation and wetting transitions on micro-structured ultrahydrophobic surfaces. Langmuir 23, 3820 (2007).

    Article  CAS  Google Scholar 

  27. T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, and R.H.A. Ras: Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673 (2011).

    Article  CAS  Google Scholar 

  28. K. Liu and L. Jiang: Metallic surfaces with special wettability. Nanoscale 3, 825 (2011).

    Article  CAS  Google Scholar 

  29. R.M. Wagterveld, C.W.J. Berendsen, S. Bouaidat, and J. Jonsmann: Ultralow hysteresis superhydrophobic surfaces by excimer laser modification of SU-8. Langmuir 22, 10904 (2006).

    Article  CAS  Google Scholar 

  30. M.T. Khorasani, H. Mirzadeh, and Z. Kermani: Wettability of porous poly-dimethylsiloxane surface: morphology study. Appl. Surf. Sci. 242, 339 (2005).

    Article  CAS  Google Scholar 

  31. N.J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M.I. Newton, C.C. Perry, and P. Roach: The use of high aspect ratio photoresist (SU-8) for superhydrophobic pattern prototyping. J. Micromech. Microeng. 14, 1384 (2004).

    Article  Google Scholar 

  32. J. Drzymala: Hydrophobicity and collectorless floatation of inorganic materials. Adv. Colloid Interface Sci. 50, 143 (1994).

    Article  CAS  Google Scholar 

  33. G. Azimi, R. Dhiman, H.-M. Kwon, A.T. Paxson, and K.K. Varanasi: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315 (2013).

    Article  CAS  Google Scholar 

  34. Y. Tian and L. Jiang: Intrinsically robust hydrophobicity. Nat. Mater. 12, 291 (2013).

    Article  CAS  Google Scholar 

  35. L. Martínez, E. Román, J.L. de Segovia, S. Poupard, J. Creus, and F. Pedraza: Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc. Appl. Surf. Sci. 257, 6202 (2011).

    Article  CAS  Google Scholar 

  36. K. Jiang: Fabrication and Catalytic Property of Cerium Oxide Nanomaterials. Ph.D. Thesis, University of Nebraska, Lincoln, 2011, Ch.2.

    Google Scholar 

  37. N.J. Lawrence, K. Jiang, and C.L. Cheung: Formation of a porous cerium oxide membrane by anodization. Chem. Commun. 47, 2703 (2011).

    Article  CAS  Google Scholar 

  38. M.M. Gentleman, J.A. Ruud, M.I. Blohm, and M. Manoharan: Wetting resistant materials and articles made therewith. US Patent/US8062775 B2, 2011.

    Google Scholar 

  39. X. Wang, J.D. Shephard, F.C. Dear, and D.P. Hand: Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J. Am. Ceram. Soc. 91, 391 (2008).

    Article  CAS  Google Scholar 

  40. A.N. Samantand N.B. Dahotre: Laser machining of structural ceramics— a review. J. Eur. Ceram. Soc. 29, 969 (2009).

    Article  CAS  Google Scholar 

  41. A.M. Kietzig, S.G. Hatzikiriakos, and P. Englezos: Patterned superhydrophobic metallic surfaces. Langmuir 25, 4821 (2009).

    Article  CAS  Google Scholar 

  42. S.H. Kim, I.-B. Sohn, and S. Jeong: Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining. Appl. Surf. Sci. 255, 9717 (2009).

    Article  CAS  Google Scholar 

  43. A.Y. Vorobyevand C. Guo: Femtosecond laser nanostructuring of metals. Opt. Express 14, 2164 (2006).

    Article  Google Scholar 

  44. A. Ben-Yakar, R.L. Byer, A. Harkin, J. Ashmore, H.A. Stone, M. Shen, and E. Mazur: Morphology of femtosecond-laser-ablated borosilicate glass surfaces. Appl. Phys. Lett. 83, 3030 (2003).

    Article  CAS  Google Scholar 

  45. A. Kurokawa, K. Odaka, Y. Azuma, T. Fujimoto, and I. Kojima: Diagnosis and cleaning of carbon contamination on SiO2 thin film. J. Surf. Anal. 15, 337 (2009).

    Article  CAS  Google Scholar 

  46. K.D. Kim, W.S. Tai, Y.D. Kim, S.-J. Cho, I.S. Bae, J.H. Boo, B.C. Lee, K.H. Yang, and O.K. Park: Change in water contact angle of carbon contaminated TiO2 surfaces by high-energy electron beam. Bull. Korean Chem. Soc. 30, 1067 (2009).

    Article  CAS  Google Scholar 

  47. M.R.H. Knowles, G. Rutterford, D. Karnakis, and A. Ferguson: Micro-machining of metals, ceramics and polymers using nanosecond lasers. Int. J. Adv. Manut Technol. 33, 95 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Tonio Buonassisi for the use of the laser equipment. We are grateful for support from MIT Energy Initiative and DARPA Young Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kripa K. Varanasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, G., Kwon, HM. & Varanasi, K.K. Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics. MRS Communications 4, 95–99 (2014). https://doi.org/10.1557/mrc.2014.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.20

Navigation