Skip to main content
Log in

Fabrication of anti-icing surface with halloysite spherical microcapsule

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The construction of halloysite spherical capsules (halloysite aerogels) was reported for the first time in our previous work. The excellent performance of the microcapsule in functional carrying was also found in our further research. In this work, the anti-icing surface was fabricated by using halloysite nanotubes and halloysite spherical microcapsules. The fabrication of the anti-icing coating was investigated, and the ice nucleation behavior of droplet on the coating surface was studied. The modified halloysite nanotubes (F-HNTs) and the modified halloysite microcapsules (F-HAs) were characterized by Fourier-transform infrared spectroscopy, thermal gravimetric, and pore size distribution. The results show that the introduction of F-HNTs and F-HAs have successfully formed a micro-nano structure on the coating surface with superhydrophobicity performance. The icing temperature of the coating has decreased 2.3 °C compared with bare glass, and the ice adhesion strength has decreased 82%. According to the ice dynamic mechanics, the ice nucleation rate on the coating is significantly reduced, thus the halloysite microcapsule coating has good icephobic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
TABLE 1:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
TABLE 2:
Figure 7:

Similar content being viewed by others

References

  1. M.J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg: Design of anti-icing surfaces: Smooth, textured or slippery. Nat. Rev. Mater. 1, 15003 (2016).

    Article  CAS  Google Scholar 

  2. L. Bocquet and E. Lauga: A smooth future. Nat. Mater. 10, 334–337 (2011).

    Article  CAS  Google Scholar 

  3. E.P. Guyer, J. Gantz, and R.H. Dauskardt: Aqueous solution diffusion in hydrophobic nanoporous thin-film glasses. J. Mater. Res. 22, 710–718 (2007).

    Article  CAS  Google Scholar 

  4. J.J. Wang and L.M. Wang: Superhydrophilic and underwater superoleophobic nanofibrous membrane for separation of oil/water emulsions. J. Mater. Res. 35, 1504–1513 (2020).

    Article  CAS  Google Scholar 

  5. P. Tourkine, M. Le Merrer, and D. Quere: Delayed freezing on water repellent materials. Langmuir 25, 7214–7216 (2009).

    Article  CAS  Google Scholar 

  6. L.L. Cao, A.K. Jones, V.K. Sikka, J.Z. Wu, and D. Gao: Anti-icing superhydrophobic coatings. Langmuir 25, 12444–12448 (2009).

    Article  CAS  Google Scholar 

  7. V. Hejazi, K. Sobolev, and M. Nosonovsky: From super-hydrophobicity to icephobicity: Forces and interaction analysis. Sci. Rep. 3, 2194 (2013).

    Article  Google Scholar 

  8. A.J. Meuler, G.H. McKinley, and R.E. Cohen: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048–7052 (2010).

    Article  CAS  Google Scholar 

  9. T.S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, and J. Aizenberg: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  Google Scholar 

  10. T. Ikeda-Fukazawa and K. Kawamura: Molecular dynamics studies of surface of ice Ih. J. Chem. Phys. 120, 1395–1401 (2004).

    Article  CAS  Google Scholar 

  11. J.D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R.E. Cohen, G.H. McKinley, and K.K. Varanasi: Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013).

    Article  CAS  Google Scholar 

  12. J. Chen, R.M. Dou, D.P. Cui, Q.L. Zhang, Y.F. Zhang, F.J. Xu, X. Zhou, J.J. Wang, Y.L. Song, and L. Jiang: Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl. Mater. Interfaces 5, 4026–4030 (2013).

    Article  CAS  Google Scholar 

  13. R. Xiao, N. Miljkovic, R. Enright, and E.N. Wang: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Sci. Rep. 3, 1988 (2013).

    Article  Google Scholar 

  14. T. Mousavand, S. Ohara, T. Naka, M. Umetsu, and S. Takami: Organic-ligand-assisted hydrothermal synthesis of ultrafine and hydrophobic ZnO nanoparticles. J. Mater. Res. 25, 219–223 (2010).

    Article  CAS  Google Scholar 

  15. B.P. Binks and T.S. Horozov: Aqueous foams stabilized solely by silica nanoparticles. Angew. Chem. 117, 3788–3791 (2005).

    Article  Google Scholar 

  16. R.G. Karunakaran, C.H. Lu, Z.H. Zhang, and S. Yang: Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (<=100 nm). Langmuir 27, 4594–4602 (2011).

    Article  CAS  Google Scholar 

  17. Z.J. Chen, Y.B. Guo, and S.M. Fang: A facial approach to fabricate superhydrophobic aluminum surface. Surf. Interface Anal. 42, 1–6 (2012).

    Google Scholar 

  18. S. Tanaka, T. Shirochi, H. Nishizawa, K. Metoki, H. Miura, H. Hara, and T. Takahashi: Micro-blasting effect on fracture resistance of PVD-AlTiN coated cemented carbide cutting tools. Surf. Coat. Technol. 308, 337–340 (2016).

    Article  CAS  Google Scholar 

  19. N. Zhao, L.H. Weng, X.Y. Zhang, Q.D. Xie, X.L. Zhang, and J. Xu: A lotus-leaf-like superhydrophobic surface prepared by solvent-induced crystallization. Chem. Phys. Chem. 7, 824–827 (2010).

    Article  Google Scholar 

  20. A. Tuteja, W. Choi, M.L. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. Mckinley, and R.E. Cohen: Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    Article  CAS  Google Scholar 

  21. S. De, A. Patel and J.L. Lutkenhaus: Layer-by-layer assembly of polymers and anisotropic nanomaterials using spray-based approach. J. Mater. Res. 35, 1163–1172 (2020).

    Article  CAS  Google Scholar 

  22. H.T. Ahmed, G.L. Joseph, D.J. Andrew, and B.B. Sarit: Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. J. Mater. Res. 25, 857–865 (2010).

    Article  Google Scholar 

  23. W.N. Kong, W.C. Wang, J.P. Gao, T.L. Liu, and Y. Liu: Oxidized starch films reinforced with natural halloysite. J. Mater. Res. 26, 2938–2944 (2011).

    Article  CAS  Google Scholar 

  24. W. Ma, H. Wu, Y. Higaki, and A. Takahara: Halloysite nanotubes: Green nanomaterial for functional organic-inorganic nanohybrids. Chem. Rec. 18, 986–999 (2018).

    Article  CAS  Google Scholar 

  25. P. Yuan, P.D. Southon, Z.W. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, and C.J. Kepert: Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J. Phys. Chem. C 112, 15742–15751 (2008).

    Article  CAS  Google Scholar 

  26. W.O. Yah, A. Takahara, and Y.M. Lvov: Selective modification of halloysite lumen with octadecylphosphonic acid: New inorganic tubular micelle. J. Am. Chem. Soc. 134, 1853–1859 (2012).

    Article  CAS  Google Scholar 

  27. H. Wu, H. Watanabe, W. Ma, A. Fujimoto, T. Higuchi, K. Uesugi, A. Takeuchi, Y. Suzuki, H. Jinnai, and A. Takahara: Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29, 14971–14975 (2013).

    Article  CAS  Google Scholar 

  28. H.Y. Li, R.Y. Li, H.L. Liu, X.Q. Bai, D.M. Wang, P.Y. Zhang, B.L. Zhang, D.Q. Wei, and X.L. Liao: Load transfer behavior of 3D aerogels fabricated with halloysite nanotubes. Macromol. Mater. Eng., 304, 1900432 (2019).

    Article  CAS  Google Scholar 

  29. S. Chandrasekaran, P.G. Campbell, T.F. Baumann, and M.A. Worsley: Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels. J. Mater. Res. 32, 4166–4185 (2017).

    Article  CAS  Google Scholar 

  30. G. Wu, P.P. Yin, R.Y. Dai, M. Wang, and H.Z. Chen: Microcapsule-based materials for electrophoretic displays. J. Mater. Res. 27, 653–662 (2012).

    Article  CAS  Google Scholar 

  31. K.Y. Feng, G.Y. Hong, J.S. Liu, M.Q. Li, C.R. Zhou, and M.X. Liu: Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem. Eng. J. 331, 744–754 (2018).

    Article  CAS  Google Scholar 

  32. S. Amoriello, A. Bianco, L. Eusebio, and P. Gronchi: Evolution of two acid steps sol-gel phases by FTIR. J. Sol–Gel Sci. Technol. 58, 209–217 (2011).

    Article  CAS  Google Scholar 

  33. M.A.H. Donners, J.W. Niemantsverdriet, and G. de With: Adsorption of H2O, H2S, and N2 on MnZn ferrite. J. Mater. Res. 15, 2730–2736 (2000).

    Article  CAS  Google Scholar 

  34. X.P. Zeng, Z.H. Sun, H. Wang, Q. Wang, and Y.J. Yang: Supramolecular gel composites reinforced by using halloysite nanotubes loading with in-situ formed Fe3O4 nanoparticles and used for dye adsorption. Compos. Sci. Technol. 122, 149–154 (2016).

    Article  CAS  Google Scholar 

  35. C. Dorrer and J. Ruehe: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820–3824 (2007).

    Article  CAS  Google Scholar 

  36. N. Tan, Z.G. Xing, X.L. Wang, H.D. Wang, G. Jin, and B.S. Xu: Effects of texturing patterns on the adhesion strength of atmosphere plasma sprayed coatings. J. Mater. Res. 32, 1682–1692 (2017).

    Article  CAS  Google Scholar 

  37. V. Bhardwaj, R. Chowdhury, and R. Jayaganthan: Adhesion strength and nanomechanical characterization of ZnO thin films. J. Mater. Res. 32, 1432–1443 (2017).

    Article  CAS  Google Scholar 

  38. C.W. Gurganus, J.C. Charnawskas, A.B. Kostinski, and R.A. Shaw: Nucleation at the contact line observed on nanotextured surfaces. Phys. Rev. Lett. 113, 235701 (2014).

    Article  CAS  Google Scholar 

  39. Q.T. Fu, X.H. Wu, D. Kumar, J.W.C. Ho, P.D. Kanhere, N. Srikanth, E.J. Liu, P. Wilson, and Z. Chen: Development of sol–gel icephobic coatings: Effect of surface roughness and surface energy. ACS Appl. Mater. Interfaces 6, 20685–20692 (2014).

    Article  CAS  Google Scholar 

  40. Q.T. Fu, E.J. Liu, P. Wilson, and Z. Chen: Ice nucleation behaviour on sol–gel coatings with different surface energy and roughness. Phys. Chem. Chem. Phys. 17, 21492–21500 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51772202) and the Natural Science Foundation of Tianjin City (Grant No. 18JCQNJC03000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongLi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Q., Liu, H. et al. Fabrication of anti-icing surface with halloysite spherical microcapsule. Journal of Materials Research 35, 2887–2896 (2020). https://doi.org/10.1557/jmr.2020.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.288

Navigation