Skip to main content
Log in

Oxygen semi-permeation properties of La1−xSrxFeO3−δ perovskite membranes under high oxygen gradient

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work is focused on the evaluation of oxygen semi-permeation and electrochemical performances under high oxygen gradient of free cobalt perovskite membrane materials; La1−xSrxFeO3−δ perovskite. For a better understanding of oxygen transport through La1−xSrxFeO3−δ perovskite membranes, the oxygen diffusion, oxygen incorporation, and desorption coefficients were determined under high oxygen gradient in relation to the temperature for La1−xSrxFeO3−δ (with x = 0.1, 0.3, 0.5, and 0.7) by a specific method based on oxygen semi-permeation. The best electrochemical performances were obtained for La0.3Sr0.7FeO3−δ (LSF37) and La0.5Sr0.5FeO3−δ (LSF55) perovskite membranes with oxygen fluxes of 1.7 × 10−3 and 1.2 × 10−3 mol/m2 s at 900 °C, respectively. The oxygen incorporation and desorption coefficients of LSF55 were two times lower than those of LSF37 and similar to those of La0.5Sr0.5Fe0.7Ga0.3O3−δ. The values of these coefficients are discussed and compared with the data reported in the literature by isotopic exchange for the similar material compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
TABLE 1:
Figure 3:
TABLE 2:
TABLE 3:
Figure 4:
TABLE 4:
Figure 5:

Similar content being viewed by others

References

  1. H.J.M. Bouwmeester and A. Burggraaf: Dense ceramic membranes for oxygen separation. CRC Handb. Solid State Electrochem., 481 (1997).

    Chapter  Google Scholar 

  2. T. Takahashi, T. Esaka, and H. Iwahara: Electrical conduction in the sintered oxides of the system Bi2O3-BaO. J. Solid State Chem. 16, 317 (1976).

    Article  CAS  Google Scholar 

  3. J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J.C. Diniz da Costa: Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13 (2008).

    Article  CAS  Google Scholar 

  4. P-M. Geffroy, E. Blond, N. Richet, and T. Chartier: Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chem. Eng. Sci. 162, 245 (2017).

    Article  CAS  Google Scholar 

  5. M. Arnold, H. Wang, and A. Feldhoff: Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J. Membr. Sci. 293, 44 (2007).

    Article  CAS  Google Scholar 

  6. C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, and S. Lenaerts: Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. J. Membr. Sci. 372, 239 (2011).

    Article  CAS  Google Scholar 

  7. T. Klande, O. Ravkina, and A. Feldhoff: Effect of microstructure on oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and SrCo0.8Fe0.2O3−δ membranes. J. Eur. Ceram. Soc. 33, 1129 (2013).

    Article  CAS  Google Scholar 

  8. A. Berenov, A. Atkinson, J. Kilner, M. Ananyev, V. Eremin, N. Porotnikova, A. Farlenkov, E. Kurumchin, H.J.M. Bouwmeester, E. Bucher, and W. Sitte: Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ion. 268, 102 (2014).

    Article  CAS  Google Scholar 

  9. Y. Teraoka, H-M. Zhang, S. Furukawa, and N. Yamazoe: Oxygen permeation through perovskite-type oxides. Chem. Lett. 11, 1743 (1985).

    Article  Google Scholar 

  10. M. Katsuki, S. Wang, M. Dokiya, and T. Hashimoto: High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant. Solid State Ion. 156, 453 (2003).

    Article  CAS  Google Scholar 

  11. T. Li, T. Kamhangdatepon, B. Wang, U.W. Hartley, and K. Li: New bio-inspired design for high-performance and highly robust La0.6Sr0.4Co0.2Fe0.8O3-δ membranes for oxygen permeation. J. Membr. Sci. 578, 203 (2019).

    Article  CAS  Google Scholar 

  12. J. Gao, Y. Lun, N. Han, X. Tan, C. Fan, and S. Liu: Influence of nitric oxide on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite membranes. Sep. Purif. Technol. 210, 900 (2019).

    Article  CAS  Google Scholar 

  13. S.P. Jiang: Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells–A review. Int. J. Hydrog. Energy 44, 7448 (2019).

    Article  CAS  Google Scholar 

  14. A. Chanda, B.X. Huang, J. Malzbender, and R.W. Steinbrech: Micro- and macro-indentation behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite. J. Eur. Ceram. Soc. 31, 401 (2011).

    Article  CAS  Google Scholar 

  15. M. Lipińska-Chwałek, F. Schulze-Küppers, and J. Malzbender: Strength and elastic modulus of lanthanum strontium cobalt ferrite membrane materials. Ceram. Int. 41, 1355 (2015).

    Article  CAS  Google Scholar 

  16. E. Bucher and W. Sitte: Defect chemical analysis of the electronic conductivity of strontium-substituted lanthanum ferrite. Solid State Ion. 173, 23 (2004).

    Article  CAS  Google Scholar 

  17. M.V. Patrakeev, J.A. Bahteeva, E.B. Mitberg, I.A. Leonidov, V.L. Kozhevnikov, and K.R. Poeppelmeier: Electron/hole and ion transport in La1−xSrxFeO3−δ. J. Solid State Chem. 172, 219 (2003).

    Article  CAS  Google Scholar 

  18. E.V. Tsipis, M.V. Patrakeev, V.V. Kharton, A.A. Yaremchenko, G.C. Mather, A.L. Shaula, I.A. Leonidov, V.L. Kozhevnikov, and J.R. Frade: Transport properties and thermal expansion of Ti-substituted La1−xSrxFeO3−δ (x=0.5–0.7). Solid State Sci. 7, 355 (2005).

    Article  CAS  Google Scholar 

  19. M. Søgaard, P. Vang Hendriksen, and M. Mogensen: Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite. J. Solid State Chem. 180, 1489 (2007).

    Article  CAS  Google Scholar 

  20. V.V. Kharton, J.C. Waerenborgh, A.P. Viskup, S.O. Yakovlev, M.V. Patrakeev, P. Gaczyński, I.P. Marozau, A.A. Yaremchenko, A.L. Shaula, and V.V. Samakhval: Mixed conductivity and Mössbauer spectra of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0–0.05, y=0–0.30). J. Solid State Chem. 179, 1273 (2006).

    Article  CAS  Google Scholar 

  21. M.F. Lü, E.V. Tsipis, J.C. Waerenborgh, A.A. Yaremchenko, V.A. Kolotygin, S. Bredikhin, and V.V. Kharton: Thermomechanical, transport and anodic properties of perovskite-type (La0.75Sr0.25)0.95Cr1−xFexO3−δ. J. Power Sources 206, 59 (2012).

    Article  CAS  Google Scholar 

  22. P.M. Geffroy, M. Reichmann, L. Kilmann, J. Jouin, N. Richet, and T. Chartier: Identification of the rate-determining step in oxygen transport through La1−xSrxFe1−yGayO3−δ perovskite membranes. J. Membr. Sci. 476, 340 (2015).

    Article  CAS  Google Scholar 

  23. V.V. Kharton, A.L. Shaulo, A.P. Viskup, M. Avdeev, A.A. Yaremchenko, M.V. Patrakeev, A.I. Kurbakov, E.N. Naumovich, and F.M.B. Marques: Perovskite-like system (Sr,La)(Fe,Ga)O3−δ: Structure and ionic transport under oxidizing conditions. Solid State Ion. 150, 229 (2002).

    Article  CAS  Google Scholar 

  24. J. Gurauskis, Ø.F. Lohne, D.S. Lagergren, E.T. Wefring, and K. Wiik: Oxygen permeation in symmetric and asymmetric La0.2Sr0.8Fe0.8Ta0.2O3−δ membranes. J. Eur. Ceram. Soc. 36, 1427 (2016).

    Article  CAS  Google Scholar 

  25. J.H. Park, K.Y. Kim, and S.D. Park: Oxygen permeation and stability of La0.6Sr0.4TixFe1−xO3−δ (x = 0.2 and 0.3) membrane. Desalination 245, 559 (2009).

    Article  CAS  Google Scholar 

  26. B. Kayaalp, S. Lee, K. Klauke, J. Seo, L. Nodari, A. Kornowski, W. Jung, and S. Mascotto: Template-free mesoporous La0.3Sr0.7Ti1-xFexO3±δ for CH4 and CO oxidation catalysis. Appl. Catal. B Environ. 245, 536 (2019).

    Article  CAS  Google Scholar 

  27. J.E. Ten Elshof, H.J.M. Bouwmeester, and H. Verweij: Oxygen transport through La1−xSrxFeO3−δ membranes. I. Permeation in air/He gradients. Solid State Ion. 81, 97 (1995).

    Article  CAS  Google Scholar 

  28. J.E. Ten Elshof, H.J.M. Bouwmeester, and H. Verweij: Oxygen transport through La1−xSrxFeO3−δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ion. 89, 81 (1996).

    Article  CAS  Google Scholar 

  29. S. Diethelm, J. Van herle, J. Sfeir, and P. Buffat: Correlation between oxygen transport properties and microstructure in La0.5Sr0.5FeO3−δ. J. Eur. Ceram. Soc. 25, 2191 (2005).

    Article  CAS  Google Scholar 

  30. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki: Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179 (1988).

    Article  CAS  Google Scholar 

  31. S.E. Dann, D.B. Currie, M.T. Weller, M.F. Thomas, and A.D. Al-Rawwas: The effect of oxygen stoichiometry on phase relations and structure in the system La1-xSrxFeO3-δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 109, 134 (1994).

    Article  CAS  Google Scholar 

  32. S. Baumann, F. Schulze-Küppers, S. Roitsch, M. Betz, M. Zwick, E.M. Pfaff, W.A. Meulenberg, J. Mayer, and D. Stöver: Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. J. Membr. Sci. 359, 102 (2010).

    Article  CAS  Google Scholar 

  33. L. Guironnet: Compréhension de l'influence Des Paramètres Micro et Nano Structuraux Sur Les Performances Électrochimiques de Conducteurs Mixtes. Thèse de doctorat, Limoges, 2017.

    Google Scholar 

  34. L. Guironnet, P-M. Geffroy, N. Tessier-Doyen, A. Boulle, N. Richet, and T. Chartier: The surface roughness effect on electrochemical properties of La0.5Sr0.5Fe0.7Ga0.3O3-δ perovskite for oxygen transport membranes. J. Membr. Sci. 588, 117199 (2019).

    Article  CAS  Google Scholar 

  35. M. Reichmann, P-M. Geffroy, J. Fouletier, N. Richet, and T. Chartier: Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3−δ and La0.5A0.5Fe0.7Co0.3O3−δ dense perovskite membranes with A = Ca, Sr and Ba (Part I). J. Power Sources 261, 175 (2014).

    Article  CAS  Google Scholar 

  36. R.A. De Souza: A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890 (2006).

    Article  CAS  Google Scholar 

  37. R.E. van Doorn, I.C. Fullarton, R.A. de Souza, J.A. Kilner, H.J.M. Bouwmeester, and A.J. Burggraaf: Surface oxygen exchange of La0.3Sr0.7CoO3−δ. Solid State Ion. 96, 1 (1997).

    Article  Google Scholar 

  38. R.A. De Souza, J.A. Kilner, and J.F. Walker: A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ. Mater. Lett. 43, 43 (2000).

    Article  Google Scholar 

  39. L. Guironnet, P-M. Geffroy, F. Jouay, C. Pagnoux, N. Richet, and T. Chartier: La0.6Sr0.4Fe0.8Co0.2O3-δ electrophoretic coating for oxygen transport membranes. Chem. Eng. Sci. X 1, 100008 (2019).

    Google Scholar 

  40. J. Fouletier, P. Fabry, and M. Kleitz: Electrochemical semipermeability and the electrode microsystem in solid oxide electrolyte cells. J. Electrochem. Soc. 123, 204 (1976).

    Article  CAS  Google Scholar 

  41. J. Fouletier, H. Seinera, and M. Kleitz: Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. II. Differential gauge. J. Appl. Electrochem. 5, 177 (1975).

    Article  CAS  Google Scholar 

  42. J. Fouletier, E. Mantel, and M. Kleitz: Performance characteristics of conventional oxygen gauges. Solid State Ion. 6, 1 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Deronzier.

Supplementary materials

Supplementary materials

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.230.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deronzier, E., Chartier, T. & Geffroy, PM. Oxygen semi-permeation properties of La1−xSrxFeO3−δ perovskite membranes under high oxygen gradient. Journal of Materials Research 35, 2506–2515 (2020). https://doi.org/10.1557/jmr.2020.230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.230

Navigation