Skip to main content
Log in

Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy was studied by differential scanning calorimetry and via running isobaric thermal cycling experiments. The cooling rates were set to 5, 10, and 15 °C/min for each cycle in both experiments, while the heating rate was kept as 10 °C/min. It was found that the transformation temperatures and thermal hysteresis values do not depend on the change in the cooling rate. On the other hand, the austenite to martensite transformation enthalpy as measured from DSC analyses increases with the increase in the cooling rate due to the higher measurement sensitivity at higher scanning rates. Recoverable strain values which were determined from isobaric thermal cycling experiments do not differ since the transforming volume does not change with the change of the cooling rate. All these findings are explained based on the fundamental thermodynamical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. D.J. Hartl and D.C. Lagoudas: Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. G221, 535–552 (2007).

    Article  CAS  Google Scholar 

  2. J.M. Jani, M. Leary, and A. Subic: Shape memory alloys in automotive applications. Appl. Mech. Mater.663, 248–253 (2014).

    Article  CAS  Google Scholar 

  3. J.J. Epps and I. Chopra: In-flight tracking of helicopter rotor blades using shape memory alloy actuators. Smart Mater. Struct.10, 104–111 (2001).

    Article  Google Scholar 

  4. F. El Feninat, G. Laroche, M. Fiset, and D. Mantovani: Shape memory materials for biomedical applications. Adv. Eng. Mater.4, 91–104 (2002).

    Article  Google Scholar 

  5. K. Otsuka and X.B. Ren: Recent developments in the research of shape memory alloys. Intermetallics7, 511–528 (1999).

    Article  CAS  Google Scholar 

  6. C.M. Wayman and T.W. Duerig: An Introduction to martensite and shape memory. In Engineering Aspects of Shape Memory Alloys, T.W. Duerig, K.N. Melton, D. Stockel, and C.M. Wayman, eds. (Butterworth, Boston, MA, 1990); p. 3.

  7. K. Otsuka and X.B. Ren: Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci.50, 511–678 (2005).

    Article  CAS  Google Scholar 

  8. J. Ma, I. Karaman, and R.D. Noebe: High temperature shape memory alloys. Int. Mater. Rev.55, 257–315 (2010).

    Article  CAS  Google Scholar 

  9. X.L. Meng, W. Cai, F. Chen, and L.C. Zhao: Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr. Mater.54, 1599–1604 (2006).

    Article  CAS  Google Scholar 

  10. A. Evirgen, I. Karaman, R.D. Noebe, R. Santamarta, and J. Pons: Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr. Mater.69, 354–357 (2013).

    Article  CAS  Google Scholar 

  11. A. Evirgen, I. Karaman, R. Santamarta, J. Pons, and R.D. Noebe: Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater.83, 48–60 (2015).

    Article  CAS  Google Scholar 

  12. A. Evirgen, I. Karaman, J. Pons, R. Santamarta, and R.D. Noebe: Role of nanoprecipitation on the microstructure and shape memory characteristics of a new Ni50.3Ti34.7Zr15 shape memory alloy. Mater. Sci. Eng. A655, 193–203 (2016).

    Article  CAS  Google Scholar 

  13. A. Evirgen, F. Basner, I. Karaman, R.D. Noebe, J. Pons, and R. Santamarta: Effect of aging on the martensitic transformation characteristics of a Ni-rich NiTiHf high temperature shape memory alloy. Funct. Mater. Lett.5, 1250038 (2012).

    Article  CAS  Google Scholar 

  14. A. Evirgen, I. Karaman, R. Santamarta, J. Pons, C. Hayrettin, and R.D. Noebe: Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater.121, 374–383 (2016).

    Article  CAS  Google Scholar 

  15. R. Santamarta, R. Arroyave, J. Pons, A. Evirgen, I. Karaman, H.E. Karaca, and R.D. Noebe: TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys. Acta Mater.61, 6191–6206 (2013).

    Article  CAS  Google Scholar 

  16. A. Evirgen, I. Karaman, R. Santamarta, J. Pons, and R.D. Noebe: Microstructural characterization and superelastic response of a Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr. Mater.81, 12–15 (2014).

    Article  CAS  Google Scholar 

  17. A.M. Perez-Sierra, J. Pons, R. Santamarta, I. Karaman, and R.D. Noebe: Stability of a Ni-rich Ni-Ti-Zr high temperature shape memory alloy upon low temperature aging and thermal cycling. Scr. Mater.124, 47–50 (2016).

    Article  CAS  Google Scholar 

  18. L. Patriarca, Y. Wu, H. Sehitoglu, and Y.I. Chumlyakov: High temperature shape memory behavior of Ni50.3Ti25Hf24.7 single crystals. Scr. Mater.115, 133–136 (2016).

    Article  CAS  Google Scholar 

  19. S.P. Aaron, G.S. Bigelow, J. Yang, D.P. Shukla, S.M. Saghaian, R. Rogers, A. Garg, H.E. Karaca, Y.I. Chumlyakov, K. Bhattacharya, and R.D. Noebe: Transformation strains and temperatures of a nickel-titanium-hafnium high temperature shape memory alloy. Acta Mater.76, 40–53 (2014).

    Article  CAS  Google Scholar 

  20. L. Patriarca, H. Sehitoglu, E.Y. Panchenko, and Y.I. Chumlyakov: High-temperature functional behavior of single crystal Ni51.2Ti23.4Hf25.4 shape memory alloy. Acta Mater.106, 333–343 (2016).

    Article  CAS  Google Scholar 

  21. B.C. Hornbuckle, T.T. Sasaki, G.S. Bigelow, R.D. Noebe, M.L. Weaver, and G.B. Thompson: Structure-property relationships in a precipitation strengthened Ni-29.7Ti-20Hf (at.%) shape memory alloy. Mater. Sci. Eng. A637, 63–69 (2015).

    Article  CAS  Google Scholar 

  22. L. Patriarca and H. Sehitoglu: High-temperature superelasticity of Ni50.6Ti24.4Hf25.0 shape memory alloy. Scr. Mater.101, 12–15 (2015).

    Article  CAS  Google Scholar 

  23. Y. Wu, L. Patriarca, H. Sehitoglu, and Y.I. Chumlyakov: Ultrahigh tensile transformation strains in new Ni50.5Ti36.2Hf13.3 shape memory alloy. Scr. Mater.118, 51–54 (2016).

    Article  CAS  Google Scholar 

  24. W. Abuzaid and H. Sehitoglu: Functional fatigue of Ni50.3Ti25Hf24.7 – Heterogeneities and evolution of local transformation strains. Mater. Sci. Eng. A696, 482–492 (2017).

    Article  CAS  Google Scholar 

  25. S.M. Saghaian, H.E. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S.E. Saghaian, Y.I. Chumlyakov, and R.D. Noebe: High strength NiTiHf shape memory alloys with tailorable properties. Acta Mater.134, 211–220 (2017).

    Article  CAS  Google Scholar 

  26. H.E. Karaca, S. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov: Effects of nano-precipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater.61, 7422–7431 (2013).

    Article  CAS  Google Scholar 

  27. O. Karakoc, C. Hayrettin, M. Bass, S.J. Wang, D. Canadinc, H.J. Mabe, D.C. Lagoudas, and I. Karaman: Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater.138, 185–197 (2017).

    Article  CAS  Google Scholar 

  28. O. Karakoc, C. Hayrettin, D. Canadinc, and I. Karaman: Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Mater.153, 156–168 (2018).

    Article  CAS  Google Scholar 

  29. H.H. Saygili, H.O. Tugrul, and B. Kockar: Effect of aging heat treatment on the high cycle fatigue life of Ni50.3Ti29.7Hf20 high-temperature shape memory alloy. Shap. Mem. Superelasticity5, 32–41 (2019).

    Article  Google Scholar 

  30. N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, and I. Karaman: Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Mater.157, 228–244 (2018).

    Article  CAS  Google Scholar 

  31. T. Umale, D. Salas, B. Tomes, R. Arróyave, and I. Karaman: The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scr. Mater.161, 78–83 (2018).

    Article  CAS  Google Scholar 

  32. Z.G. Wang, T.X. Zu, and Y. Huo: Effect of heating/cooling rate on the transformation temperatures in TiNiCu shape memory alloys. Thermochim. Acta436, 153–155 (2005).

    Article  CAS  Google Scholar 

  33. K. Nurveren, A. Akdogan, and W.M. Huang: Evolution of transformation characteristics with heating/cooling rate in NiTi shape memory alloys. J. Mater. Process. Technol.196, 129–134 (2008).

    Article  CAS  Google Scholar 

  34. Q. Meng, H. Yang, Y. Liu, and T. Nam: Transformation intervals and elastic strain energies of B2-B19’ martensitic transformation of NiTi. Intermetallics18, 2431–2434 (2010).

    Article  CAS  Google Scholar 

  35. P.C.C. Monteiro, Jr., L.L. Luciana, T.A. Netto, and M.A. Savi: Experimental investigation of the influence of the heating rate in an SMA actuator performance. Sens. Actuat. A199, 254–259 (2013).

    Article  CAS  Google Scholar 

  36. M.G. Faulkner, J.J. Amaraj, and A. Bhattacharyya: Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires. Smart Mater. Struct.9, 632–639 (2000).

    Article  CAS  Google Scholar 

  37. B. Kockar, I. Karaman, J.I. Kim, Y.I. Chumlyakov, J. Sharp, and C.J.M. Yu: Thermomechanical cyclic response of an ultrafinegrained NiTi shape memory alloy. Acta Mater.56, 3630–3646 (2008).

    Article  CAS  Google Scholar 

  38. H.E. Karaca, E. Acar, H. Tobe, and S.M. Saghaian: NiTiHf-based shape memory alloys. Mater. Sci. Technol.30, 1530–1544 (2014).

    Article  CAS  Google Scholar 

  39. X.D. Han, C.Y. Chung, R. Wang, Z. Zhang, J.K.L. Lai, and D.Z. Yang: Martensitic transformation in Ti36.5Ni48.5Hf15 high temperature shape memory alloy. Mater. Trans. JIM38, 842–851 (1997).

    Article  CAS  Google Scholar 

  40. K.C. Atli, I. Karaman, R.D. Noebe, A. Garg, Y.I. Chumlyakov, and I.V. Kireeva: Shape memory characteristics of TL19.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation. Acta Mater.59, 4747–4760 (2011).

    Article  CAS  Google Scholar 

  41. S. Qiu, V.B. Krishnan, S.A. Padula, R.D. Noebe, D.W. Brown, B. Clausen, and R. Vaidyanathan: Measurement of the lattice plane strain and phase fraction evolution during heating and cooling in shape memory NiTi. Appl. Phys. Lett.95, 141906 (2009).

    Article  CAS  Google Scholar 

  42. P. Wollants, J.R. Roos, and L. Delaey: Thermally and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci.37, 227–288 (1993).

    Article  CAS  Google Scholar 

  43. J.A. Bevis, R. Bottom, J. Duncan, I. Farhat, M. Forrest, D. Furniss, P. Gabbott, B. MacNaughtan, and S. Nazhat: A practical introduction to differential scanning calorimetry. In Principles and Applications of Thermal Analysis, P. Gabbott, ed. (Blackwell Publishing, Oxford, UK, 2008); p. 9.

  44. ASTM F2004: Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis.

  45. K.C. Atli, I. Karaman, R.D. Noebe, A. Garg, Y.I. Chumlyakov, and I.V. Kireeva: Improvement in the shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying. Metall. Mater. Trans. A41A, 2485–2497 (2010).

    Article  CAS  Google Scholar 

  46. K.C. Atli, I. Karaman, and R.D. Noebe: Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24.5Pd25 high temperature shape memory alloy. Mater. Sci. Eng. A613, 250–258 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Turkish Aerospace Industries [Grant No. DKTM/2015/10].

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgul, O., Tugrul, H.O. & Kockar, B. Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy. Journal of Materials Research 35, 1572–1581 (2020). https://doi.org/10.1557/jmr.2020.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.139

Navigation