Skip to main content
Log in

Thermal expansion of nano–boron carbide under constant DC electric field: An in situ energy dispersive X-ray diffraction study using a synchrotron probe

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermal expansion coefficient (TEC) of nano-B4C having 50 nm mean particle size was measured as a function of applied direct current (DC) electric field strength varying from 0 to 12.7 V/mm and over a temperature range from 298 K up to 1273 K. The TEC exhibits a linear variation with temperature despite being measured over a range that is well below 50% of B4C’s normal melting temperature. The zeroth- and first-order TEC coefficients under zero-field condition are 4.8220 ± 0.009 × 10−6 K−1 and 1.462 ± 0.004 × 10−9 K−1, respectively. Both TECs exhibit applied DC electric field dependence. The higher the applied field strength, the steeper the linear thermal expansion response in nano-B4C, which suggests that the applied field affects the curvature of the interatomic potentials at the equilibrium bond length at a given temperature. No anisotropic thermal expansion with and without applied electric field was observed, although nano-B4C has a rhombohedral unit cell symmetry. The rhombohedral unit cell angle was determined as δR = 65.7046° (0.0007), and it remains unaffected by a change in temperature and applied electric field strength, which we attribute to B4C nanoparticle size and its carbon saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. C. Kittel: Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, New York, NY, 2005).

    Google Scholar 

  2. R.E. Newnham: Properties of Materials (Oxford University Press, Oxford, U.K., 2005).

    Google Scholar 

  3. V. Domnich, S. Reynaud, R.A. Haber, and M. Chhowalla: Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605–3628 (2011).

    Article  CAS  Google Scholar 

  4. R.A. Andrievski: Micro- and nanosized boron carbide: Synthesis, structure and properties. Russ. Chem. Rev. 81, 549–559 (2012).

    Article  CAS  Google Scholar 

  5. N. Vast, J. Sjakste, and E. Betranhandy: Boron carbides from first principles. J. Phys.: Conf. Ser. 176, 012002 (2009).

    Google Scholar 

  6. A.K. Suri, C. Subramanian, J.K. Sonber, and T.C. Murthy: Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 55, 4–40 (2010).

    Article  CAS  Google Scholar 

  7. C. Wood and D. Emin: Conduction mechanism in boron carbide. Phys. Rev. B 29, 4582 (1984).

    Article  CAS  Google Scholar 

  8. B. Matchen: Applications of ceramics in armor products. Key Eng. Mater. 122, 333–344 (1996).

    Article  Google Scholar 

  9. L. Vargas-Gonzalez, R.F. Speyer, and J. Campbell: Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics. Int. J. Appl. Ceram. Technol. 7, 643–651 (2010).

    Article  CAS  Google Scholar 

  10. D. Emin and T.L. Aselage: A proposed boron-carbide-based solid-state neutron detector. J. Appl. Phys. 97, 013529 (2005).

    Article  Google Scholar 

  11. W.K. Barney, G.A. Sehmel, and W.E. Seymour: The use of boron carbide for reactor control. Nucl. Sci. Eng. 4, 439–448 (1958).

    Article  CAS  Google Scholar 

  12. B.D. Cullity: Elements of X-ray Diffraction, 2nd ed. (Adisson-Wesley Publishing, USA, 1978).

    Google Scholar 

  13. T.L. Aselage and R.G. Tissot: Lattice constants of boron carbides. J. Am. Ceram. Soc. 75, 2207–2212 (1992).

    Article  CAS  Google Scholar 

  14. F. Thevenot: Boron carbide—A comprehensive review. J. Eur. Ceram. Soc. 6, 205–225 (1990).

    Article  CAS  Google Scholar 

  15. A. Lipp: Boron Carbide: Production, Properties, and Applications, Battelle Northwest Laboratories, NTIS Issue Number 197013, 1970.

  16. T.R. Pilladi, G. Panneerselvam, S. Anthonysamy, and V. Ganesan: Thermal expansion of nanocrystalline boron carbide. Ceram. Int. 38, 3723–3728 (2012).

    Article  CAS  Google Scholar 

  17. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830–849 (2014).

    Article  CAS  Google Scholar 

  18. U. Anselmi-Tamburini, Z.A. Munir, Y. Kodera, T. Imai, and M. Ohyanagi: Influence of synthesis temperature on the defect structure of boron carbide: Experimental and modeling studies. J. Am. Ceram. Soc. 88, 1382–1387 (2005).

    Article  CAS  Google Scholar 

  19. D. Yang, R. Raj, and H. Conrad: Enhanced sintering rate of zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth. J. Am. Ceram. Soc. 93, 2935–2937 (2010).

    Article  CAS  Google Scholar 

  20. E.K. Akdoğan, İ. Şavklıyıldız, H. Biçer, W. Paxton, F. Toksoy, Z. Zhong, and T. Tsakalakos: Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive X-ray diffractometry study with an ultrahigh energy synchrotron probe. J. Appl. Phys. 113, 233503 (2013).

    Article  Google Scholar 

  21. T.J.B. Holland and S.A.T. Redfern: Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 61, 65–77 (1997).

    Article  CAS  Google Scholar 

  22. Y. Waseda, E. Matsubara, and K. Shinobada: X-ray Diffraction Crystallography (Springer, New York, 2011).

    Book  Google Scholar 

  23. J.F. Nye: Physical Properties of Crystals (Oxford University Press, Oxford, U.K., 1985).

    Google Scholar 

  24. M.M. Balakrishnarajan, P.D. Pancharatna, and R. Hoffmann: Structure and bonding in boron carbide: The invincibility of imperfections. New J. Chem. 31, 473 (2007).

    Article  CAS  Google Scholar 

  25. H.L. Yakel: Lattice expansions of two boron carbides between 12 and 940 °C. J. Appl. Crystallogr. 6, 471 (1973).

    Article  CAS  Google Scholar 

  26. M. Born and K. Huang: Dynamical Theory of Crystal Lattices (Clarendon Press, Wotton-Under-Edge, 1998).

    Google Scholar 

  27. C. Haines, E.K. Akdoğan, and T. Tsakalakos. Private communication (2019).

  28. R.L. Snyder: The Rietveld Method, R.A. Young, ed. (Oxford University Press, New York, NY, 1993); pp. 111–131.

    Google Scholar 

  29. Jade (Materials Data Inc., Livermore, California, 2019).

Download references

Acknowledgments

The authors wish to express their gratitude for the financial support provided by the Office of Naval Research (ONR) under Contract Nos. N00014-10-1-042 and N00014-17-1-2087, Sub-Award No. 4104–78982 from Purdue. The authors wish to thank Dr. Antti Makinen and Dr. Larry Kabacoff of the ONR for their valuable technical feedback. This research was carried out in part at the NSLS, which is supported by the U.S. Department of Energy, Division of Material Sciences, and Division of Chemical Sciences, under Contract No. DE-AC02-06CH11357. H.B. and İ.Ş. acknowledge the financial support from the Ministry of Education of the Turkish Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hülya Biçer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biçer, H., Akdoğan, E.K., Şavklıyıldız, İ. et al. Thermal expansion of nano–boron carbide under constant DC electric field: An in situ energy dispersive X-ray diffraction study using a synchrotron probe. Journal of Materials Research 35, 90–97 (2020). https://doi.org/10.1557/jmr.2019.382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.382

Navigation