Skip to main content

Advertisement

Log in

Paulownia tomentosa derived porous carbon with enhanced sodium storage

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Porous carbon derived from biomass materials with enrich, low cost, clean, and renewable merits, exhibits various physical and chemical properties. So, it is of great significance to rationally utilize biomass materials for producing porous carbon with low cost to reduce overusing fossil fuel and environmental pollution. In this report, porous carbon has been fabricated using fruits shells of the Paulownia tomentosa by a facile method of KOH-activation. The as-obtained porous carbon containing a larger number of micropores and slight mesopores possesses a high specific surface area (1914.4 m2/g) and well hierarchical porosity. As the anode for sodium ion batteries, the porous carbon sample displays superior cycling stability and rate capability, delivering a reversible specific capacity of 179 mA h/g at 50 mA/g after 100 cycles and a discharge specific capacity of 100 mA h/g at 1 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. P. Liu, Y. Li, Y-S. Hu, H. Li, L. Chen, and X. Huang: A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 4 (34), 13046 (2016).

    Article  CAS  Google Scholar 

  2. Y. Nishi: Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 100 (1), 101 (2001).

    Article  CAS  Google Scholar 

  3. D. Qin and S. Chen: A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode. J. Solid State Electrochem. 21 (5), 1305 (2017).

    Article  CAS  Google Scholar 

  4. L. Fan, X. Li, B. Yan, J. Feng, D. Xiong, D. Li, L. Gu, Y. Wen, S. Lawes, and X. Sun: Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 6 (10), 1502057 (2016).

    Article  Google Scholar 

  5. X. Li, X. Li, L. Fan, Z. Yu, B. Yan, D. Xiong, X. Song, S. Li, K.R. Adair, D. Li, and X. Sun: Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries. Appl. Surf. Sci. 412 (Suppl. C), 170 (2017).

    Article  CAS  Google Scholar 

  6. X. Song, X. Li, Z. Bai, B. Yan, D. Li, and X. Sun: Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries. Nano Energy 26 (Suppl. C), 533 (2016).

    Article  CAS  Google Scholar 

  7. V. Palomares, P. Serras, I. Villaluenga, K. Hueso, J. Gonzalez, and T. Rojo: Na-ion batteries, recent advances and present challenges to become low cost. Energy Storage Syst. 5 (3), 5884–5901 (2012).

    CAS  Google Scholar 

  8. S. Zhang, J. Zhang, S. Wu, W. Lv, F. Kang, and C. Yuan: Research advances of carbon-based anode materials for sodium-ion batteries. Acta Chim. Sin. 75 (2), 163 (2017).

    Article  CAS  Google Scholar 

  9. R.R. Gaddam, D. Yang, R. Narayan, K. Raju, N.A. Kumar, and X.S. Zhao: Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26 (Suppl. C), 346 (2016).

    Article  CAS  Google Scholar 

  10. P. Kalyani and A. Anitha: Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrogen Energy 38 (10), 4034 (2013).

    Article  CAS  Google Scholar 

  11. M. Rana, K. Subramani, M. Sathish, and U.K. Gautam: Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture. Carbon 114, 679 (2017).

    Article  CAS  Google Scholar 

  12. S. De, A.M. Balu, J.C. van der Waal, and R. Luque: Biomass-derived porous carbon materials: Synthesis and catalytic applications. ChemCatChem 7 (11), 1608 (2015).

    Article  CAS  Google Scholar 

  13. H. Wang, W. Yu, J. Shi, N. Mao, S. Chen, and W. Liu: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim. Acta 188, 103 (2016).

    Article  CAS  Google Scholar 

  14. H. Varma, Avinesh, R. Narasimman, and K. Prabhakaran: Preparation and characterization of hierarchical porous carbon by a hard-template. Mater. Sci. Forum 830–831, 585 (2015).

    Article  Google Scholar 

  15. S. Zhao, C. Li, W. Wang, H. Zhang, M. Gao, X. Xiong, A. Wang, K. Yuan, Y. Huang, and F. Wang: A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J. Mater. Chem. A 1 (10), 3334 (2013).

    Article  CAS  Google Scholar 

  16. W. Chen, H. Zhang, Y. Huang, and W. Wang: A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 20 (23), 4773 (2010).

    Article  CAS  Google Scholar 

  17. C. Guo, R. Hu, W. Liao, Z. Li, L. Sun, D. Shi, Y. Li, and C. Chen: Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim. Acta 236, 228 (2017).

    Article  CAS  Google Scholar 

  18. H. Ru, K. Xiang, W. Zhou, Y. Zhu, X.S. Zhao, and H. Chen: Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochim. Acta 222, 551 (2016).

    Article  CAS  Google Scholar 

  19. X. Yu, Y. Wang, L. Li, H. Li, and Y. Shang: Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci. Rep. 7, 45378 (2017).

    Article  CAS  Google Scholar 

  20. Y. Cai, Y. Luo, H. Dong, X. Zhao, Y. Xiao, Y. Liang, H. Hu, Y. Liu, and M. Zheng: Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors. J. Power Sources 353, 260 (2017).

    Article  CAS  Google Scholar 

  21. Y. Gong, D. Li, C. Luo, Q. Fu, and C. Pan: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19 (17), 4132 (2017).

    Article  CAS  Google Scholar 

  22. W. Huang, H. Zhang, Y. Huang, W. Wang, and S. Wei: Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49 (3), 838 (2011).

    Article  CAS  Google Scholar 

  23. Y-H. Ke, E-T. Yang, X. Liu, C-L. Liu, and W-S. Dong: Preparation of porous carbons from non-metallic fractions of waste printed circuit boards by chemical and physical activation. Carbon 60 (Suppl. C), 563 (2013).

    Article  CAS  Google Scholar 

  24. S. Imtiaz, J. Zhang, Z.A. Zafar, S. Ji, T. Huang, J.A. Anderson, Z. Zhang, and Y. Huang: Biomass-derived nanostructured porous carbons for lithium–sulfur batteries. Sci. China Mater. 59 (5), 389 (2016).

    Article  CAS  Google Scholar 

  25. J. Wang and S. Kaskel: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22 (45), 23710 (2012).

    Article  CAS  Google Scholar 

  26. D. Lozano-Castelló, J.M. Calo, D. Cazorla-Amorós, and A. Linares-Solano: Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45 (13), 2529 (2007).

    Article  Google Scholar 

  27. T. Otowa, R. Tanibata, and M. Itoh: Production and adsorption characteristics of MAXSORB: High-surface-area active carbon. Gas Sep. Purif. 7 (4), 241 (1993).

    Article  CAS  Google Scholar 

  28. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S.W. Sing: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87 (9–10), 929 (2015).

    Google Scholar 

  29. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, and J. Machnikowski: Erratum to “Electrochemical capacitors based on highly porous carbons prepared by KOH activation”. Electrochim. Acta 49 (7), 1169 (2004).

    Article  CAS  Google Scholar 

  30. H. Ye, Y-X. Yin, S. Xin, and Y-G. Guo: Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. J. Mater. Chem. A 1 (22), 6602 (2013).

    Article  CAS  Google Scholar 

  31. J. Ou, L. Yang, Z. Zhang, and X. Xi: Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Microporous Mesoporous Mater. 237, 23 (2017).

    Article  CAS  Google Scholar 

  32. D. Xiong, X. Li, Z. Bai, H. Shan, L. Fan, C. Wu, D. Li, and S. Lu: Superior cathode performance of nitrogen-doped graphene frameworks for lithium ion batteries. ACS Appl. Mater. Interfaces 9 (12), 10643 (2017).

    Article  CAS  Google Scholar 

  33. X. Shi, Z. Zhang, Y. Fu, and Y. Gan: Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries. Mater. Lett. 161, 332 (2015).

    Article  CAS  Google Scholar 

  34. S. Deheryan, D.J. Cott, P.W. Mertens, M. Heyns, and P.M. Vereecken: Direct correlation between the measured electrochemical capacitance, wettability and surface functional groups of carbon nanosheets. Electrochim. Acta 132, 574 (2014).

    Article  CAS  Google Scholar 

  35. J. Ou, L. Yang, and X. Xi: Hierarchical porous nitrogen doped carbon derived from horn comb as anode for sodium-ion storage with high performance. Electron. Mater. Lett. 13 (1), 66 (2016).

    Article  Google Scholar 

  36. P. Simon and Y. Gogotsi: Materials for electrochemical capacitor. Nat. Mater. 7 (11), 845–854 (2008).

    Article  CAS  Google Scholar 

  37. H. Liu, M. Jia, N. Sun, B. Cao, R. Chen, Q. Zhu, F. Wu, N. Qiao, and B. Xu: Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7 (49), 27124 (2015).

    Article  CAS  Google Scholar 

  38. Z.J. Qiao, M.M. Chen, C.Y. Wang, and Y.C. Yuan: Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors. Bioresour. Technol. 163, 386 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China (51572194 and 51672189), The Key Project of the Tianjin Science & Technology Support Program (17YFZCGX00550), and Academic Innovation Funding of Tianjin Normal University (52XC1404).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xifei Li, Dejun Li or Xueliang Sun.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Li, X., Li, X. et al. Paulownia tomentosa derived porous carbon with enhanced sodium storage. Journal of Materials Research 33, 1236–1246 (2018). https://doi.org/10.1557/jmr.2017.452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.452

Navigation