Skip to main content
Log in

Cyclically induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Structural instabilities of nanocrystalline and ultrafine-grained (UFG) materials have been recognized as a major challenge during cyclic loading, especially in the low cycle fatigue regime. Although a severe deterioration of the mechanical properties has been reported during cyclic deformation, quantification of the softening portion solely due to grain coarsening was not possible. It will be demonstrated that cyclic high pressure torsion (CHPT) is a versatile method to enable direct measurement of the impact of grain coarsening on cyclic softening, as failure of the sample is prevented. Here, CHPT experiments have been performed on 99.99% UFG nickel. Grain coarsening similar to conventional uniaxial fatigue experiments was observed and could be studied up to large cyclic accumulated macro strains of 50. The correlation of electron back scatter diffraction images with microhardness measurements facilitated quantification of the cyclic softening as a consequence of grain growth for the very first time. Further, structural investigations revealed distinctly enhanced grain coarsening within shear bands. Thus, the cyclic strain seems to be the most important parameter controlling mechanically driven boundary migration during cyclic loading at low homologous temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. H. Mughrabi, H.W. Höppel, and M. Kautz: Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr. Mater. 51 (8), 807 (2004).

    Article  CAS  Google Scholar 

  2. O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan: Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper. Acta Mater. 77 (100), 401 (2014).

    Article  CAS  Google Scholar 

  3. T. Yu, N. Hansen, X. Huang, and A. Godfrey: Observation of a new mechanism balancing hardening and softening in metals. Mater. Res. Lett. 2 (3), 160–165 (2014).

    Article  CAS  Google Scholar 

  4. O. Renk, P. Ghosh, and R. Pippan: Generation of extreme grain aspect ratios in severely deformed tantalum at elevated temperatures. Scr. Mater. 137, 60 (2017).

    Article  CAS  Google Scholar 

  5. D.S. Gianola, S. van Petegem, M. Legros, S. Brandstetter, H. van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54 (8), 2253 (2006).

    Article  CAS  Google Scholar 

  6. D.S. Gianola, B.G. Mendis, X.M. Cheng, and K.J. Hemker: Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater. Sci. Eng., A 483–484, 637 (2008).

    Article  CAS  Google Scholar 

  7. T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker: Experimental observations of stress-driven grain boundary migration. Science 326 (5960), 1686 (2009).

    Article  CAS  Google Scholar 

  8. M. Legros, D.S. Gianola, and K.J. Hemker: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56 (14), 3380 (2008).

    Article  CAS  Google Scholar 

  9. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52 (18), 5381 (2004).

    Article  CAS  Google Scholar 

  10. F. Mompiou, M. Legros, A. Boé, M. Coulombier, J-P. Raskin, and T. Pardoen: Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: An in situ TEM study. Acta Mater. 61 (1), 205 (2013).

    Article  CAS  Google Scholar 

  11. K. Zhang, J.R. Weertman, and J.A. Eastman: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87 (6), 061921 (2005).

    Article  CAS  Google Scholar 

  12. B. Yang, H. Vehoff, A. Hohenwarter, M. Hafok, and R. Pippan: Strain effects on the coarsening and softening of electrodeposited nanocrystalline Ni subjected to high pressure torsion. Scr. Mater. 58 (9), 790 (2008).

    Article  CAS  Google Scholar 

  13. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier: Saturation of fragmentation during severe plastic deformation. Annu. Rev. Mater. Res. 40 (1), 319 (2010).

    Article  CAS  Google Scholar 

  14. S. Agnew and J. Weertman: Cyclic softening of ultrafine grain copper. Mater. Sci. Eng., A 244 (2), 145 (1998).

    Article  Google Scholar 

  15. L. Kunz, P. Lukáš, and M. Svoboda: Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng., A 424 (1–2), 97 (2006).

    Article  CAS  Google Scholar 

  16. D. Canadinca, T. Niendorf, and H.J. Maier: A comprehensive evaluation of parameters governing the cyclic stability of. Mater. Sci. Eng., A 528, 6345 (2011).

    Article  CAS  Google Scholar 

  17. H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781 (2002).

    Article  Google Scholar 

  18. M.W. Kapp, T. Kremmer, C. Motz, B. Yang, and R. Pippan: Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments. Acta Mater. 125, 351 (2017).

    Article  CAS  Google Scholar 

  19. H.W. Höppel, C. Xu, M. Kautz, N. Barta-Schreiber, T.G. Langdon, and H. Mughrabi: Cyclic deformation behaviour and possibilities for enhancing the fatigue properties of ultrafine-grained metals. In Nanomaterials by Severe Plastic Deformation, M. Zehetbauer and R.Z. Valiev, eds. (Wiley-VCH, Weinheim, Germany 2004); p. 677.

    Google Scholar 

  20. N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, and A. Misra: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97 (2), 021909 (2010).

    Article  CAS  Google Scholar 

  21. S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, and I.J. Beyerlein: Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282 (2014).

    Article  CAS  Google Scholar 

  22. M.W. Kapp, A. Hohenwarter, S. Wurster, B. Yang, and R. Pippan: Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel. Acta Mater. 106, 239 (2016).

    Article  CAS  Google Scholar 

  23. D. Jia, K.T. Ramesh, and E. Ma: Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater. 51 (12), 3495 (2003).

    Article  CAS  Google Scholar 

  24. S.R. Agnew, A.Y. Vinogradov, S. Hashimoto, and J.R. Weertman: Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 28 (9), 1038 (1999).

    Article  CAS  Google Scholar 

  25. A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, and R.Z. Valiev: On the cyclic response of ultrafine-grained copper. Mater. Sci. Forum 269–272, 987 (1998).

    Article  Google Scholar 

  26. S.D. Wu, Z.G. Wang, C.B. Jiang, and G.Y. Li: Scanning electron microscopy-electron channelling contrast investigation of recrystallization during cyclic deformation of ultrafine grained copper processed by equal channel angular pressing. Philos. Mag. Lett. 82 (10), 559 (2002).

    Article  CAS  Google Scholar 

  27. S.D. Wu, Z.G. Wang, C.B. Jiang, G.Y. Li, I.V. Alexandrov, and R.Z. Valiev: Shear bands in cyclically deformed ultrafine grained copper processed by ECAP. Mater. Sci. Eng., A 387–389, 560 (2004).

    Article  CAS  Google Scholar 

  28. H. Mughrabi and H.W. Höppel: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32 (9), 1413 (2010).

    Article  CAS  Google Scholar 

  29. M. Wong, W. Kao, J. Lui, C. Chang, and P. Kao: Cyclic deformation of ultrafine-grained aluminum. Acta Mater. 55 (2), 715 (2007).

    Article  CAS  Google Scholar 

  30. F. Wetscher and R. Pippan: Cyclic high-pressure torsion of nickel and Armco iron. Philos. Mag. 86 (36), 5867 (2006).

    Article  CAS  Google Scholar 

  31. E. Schafler and R. Pippan: Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel. Mater. Sci. Eng., A 387–389, 799 (2004).

    Article  CAS  Google Scholar 

  32. P. Ghosh, O. Renk, and R. Pippan: Microtexture analysis of restoration mechanisms during high pressure torsion of pure nickel. Mater. Sci. Eng., A 684, 101 (2017).

    Article  CAS  Google Scholar 

  33. L. Toth, P. Gilormini, and J. Jonas: Effect of rate sensitivity on the stability of torsion textures. Acta Metall. Mater. 36 (12), 3077 (1988).

    Article  CAS  Google Scholar 

  34. L. Kunz, P. Lukáš, L. Pantelejev, and O. Man: Stability of ultrafine-grained structure of copper under fatigue loading. Procedia Eng. 10, 201 (2011).

    Article  CAS  Google Scholar 

  35. B.L. Boyce and H.A. Padilla: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall. Mater. Trans. A 42 (7), 1793 (2011).

    Article  CAS  Google Scholar 

  36. R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, R.O. Ritchie, and C.L. Muhlstein: Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Mater. 59 (3), 1141 (2011).

    Article  CAS  Google Scholar 

  37. O. Glushko and M.J. Cordill: The driving force governing room temperature grain coarsening in thin gold films. Scr. Mater. 130, 42 (2017).

    Article  CAS  Google Scholar 

  38. S. Brandstetter, K. Zhang, A. Escuadro, J.R. Weertman, and H. van Swygenhoven: Grain coarsening during compression of bulk nanocrystalline nickel and copper. Scr. Mater. 58 (1), 61 (2008).

    Article  CAS  Google Scholar 

  39. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331 (6024), 1587 (2011).

    Article  CAS  Google Scholar 

  40. F. Mompiou and M. Legros: Quantitative grain growth and rotation probed by in situ TEM straining and orientation mapping in small grained Al thin films. Scr. Mater. 99, 5 (2015).

    Article  CAS  Google Scholar 

  41. J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis: Mechanical behavior of a bulk nanostructured iron alloy. Metall. Mater. Trans. A 29 (9), 2261 (1998).

    Article  Google Scholar 

  42. B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield: Deformation structures and textures in cold-rolled 70:30 brass. Met. Sci. 12 (8), 343 (2013).

    Article  Google Scholar 

  43. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, U.K., 2004).

    Google Scholar 

  44. J.M. Finney and C. Laird: Strain localization in cyclic deformation of copper single crystals. Philos. Mag. 31 (2), 339 (1975).

    Article  CAS  Google Scholar 

  45. A. Rajabzadeh, M. Legros, N. Combe, F. Mompiou, and D.A. Molodov: Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration. Philos. Mag. 93 (10–12), 1299 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

Financial support by the FWF Austrian Science Fund within project number P24429-N20 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Walpurga Kapp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapp, M.W., Renk, O., Leitner, T. et al. Cyclically induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion. Journal of Materials Research 32, 4317–4326 (2017). https://doi.org/10.1557/jmr.2017.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.273

Navigation