Skip to main content
Log in

Microstructure evolution with composition ratio in self-assembled WO3–BiVO4 hetero nanostructures for water splitting

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of self-assembled WO3–BiVO4 nanostructured thin films with 17, 25, 50, 67, and 100 mol% WO3 were grown on the (001) yttria-stabilized zirconia (YSZ) substrate by pulsed laser deposition method. The microstructures including crystalline phases, epitaxial relationship, interface structures, and chemical composition distributions were investigated by a combination of various electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, and X-ray energy dispersive spectroscopy. The monoclinic BiVO4 formed the matrix, in which WO3 nanopillars were embedded with specific epitaxial relationships. In BiVO4-rich sample, orthorhombic Bi2WO6 was formed. However, metastable hexagonal WO3 phase and orthorhombic WO3 phase coexisted in other composite samples. The thin amorphous layer at the film/substrate interface indicated that the mismatch strain between films and substrate is released. The hydrostatic tensile strain due to thermal expansion mismatch between BiVO4 and WO3 as well as the diffusion of Bi into the WO3 stabilized the metastable h-WO3. A WO3–BiVO4 pseudobinary phase diagram was proposed based on the magnitude of the thermal expansion mismatch and the distance of Bi diffusion, which can be applied to design the microstructures of WO3–BiVO4 heterojunctions and optimize their photoelectrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  2. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  3. K. Maedaa: Photocatalytic water splitting using semiconductor particles: History an recent developments. J. Photochem. Photobiol., C 12, 237–268 (2011).

    Article  Google Scholar 

  4. R. Chatten, A.V. Chadwick, A. Rougier, and P.J.D. Lindan: The oxygen vacancy in crystal phases of WO3. J. Phys. Chem. B 109, 3146–3156 (2005).

    Article  CAS  Google Scholar 

  5. J.K. Cooper, S. Gul, F.M. Toma, L. Chen, P-A. Glans, J. Guo, J.W. Ager, J. Yano, and I.D. Sharp: Electronic structure of monoclinic BiVO4. Chem. Mater. 26, 5365–5373 (2014).

    Article  CAS  Google Scholar 

  6. S.J. Hong, S. Lee, J.S. Jang, and J.S. Lee: Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781 (2011).

    Article  CAS  Google Scholar 

  7. K. Zhang, X.J. Shi, J.K. Kim, and J.H. Park: Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Phys. Chem. Chem. Phys. 14, 11119–11124 (2012).

    Article  CAS  Google Scholar 

  8. J. Su, L. Guo, N. Bao, and C.A. Grimes: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011).

    Article  CAS  Google Scholar 

  9. Y. Park, K.J. McDonald, and K.S. Choi: Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013).

    Article  CAS  Google Scholar 

  10. F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, and R. van de Krol: The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752–2757 (2013).

    Article  CAS  Google Scholar 

  11. Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, and T. Kitamori: Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10, 3692–3699 (2014).

    Article  CAS  Google Scholar 

  12. P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, and X. Zheng: Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014).

    Article  CAS  Google Scholar 

  13. X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, S.H. Oh, J.K. Kim, and J.H. Park: Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014).

    Article  CAS  Google Scholar 

  14. Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, and T. Kitamori: Photocatalytic generation of hydrogen by core–shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).

    Article  Google Scholar 

  15. C.N. Van, T.H. Do, J-W. Chen, W-Y. Tzeng, K-A. Tsai, H. Song, H-J. Liu, Y.C. Lin, Y-C. Chen, C-L. Wu, C-W. Luo, W.C. Chou, R. Huang, Y-J. Hsu, and Y-H. Chu: WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4. NPG Asia Mater. 9, e357 (2016).

    Google Scholar 

  16. O. Lebedev, J. Verbeeck, G. Van Tendeloo, O. Shapoval, A. Belenchuk, V. Moshnyaga, B. Damashcke, and K. Samwer: Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1−x:(MgO)x composite films. Phys. Rev. B 66, 104421 (2002).

    Article  Google Scholar 

  17. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  18. H. Luo, H. Yang, S.A. Baily, O. Ugurlu, M. Jain, M.E. Hawley, T.M. McCleskey, A.K. Burrell, E. Bauer, L. Civale, T.G. Holesinger, and Q. Jia: Self-assembled epitaxial multiferroic nanocomposite films prepared by polymer-assisted deposition. J. Am. Chem. Soc. 129, 14132–14133 (2007).

    Article  CAS  Google Scholar 

  19. J.L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon, A. Fouchet, R. Yu, M.G. Blamire, and Q. Jia: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314–320 (2008).

    Article  CAS  Google Scholar 

  20. A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783–2792 (2013).

    Article  CAS  Google Scholar 

  21. J.L. MacManus-Driscoll: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035–2045 (2010).

    Article  CAS  Google Scholar 

  22. W.L. Winterbottom: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303–310 (1967).

    Article  CAS  Google Scholar 

  23. H. Zheng, F. Straub, Q. Zhan, P-L. Yang, W-K. Hsieh, F. Zavaliche, Y-H. Chu, U. Dahmen, and R. Ramesh: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747–2752 (2006).

    Article  CAS  Google Scholar 

  24. H.J. Liu, W.I. Liang, Y.H. Chu, H.M. Zheng, and R. Ramesh: Self-assembled vertical heteroepitaxial nanostructures: From growth to functionalities. MRS Commun. 4, 31–44 (2014).

    Article  Google Scholar 

  25. W. Zhang, A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control. Curr. Opin. Solid State Mater. Sci. 18, 6–18 (2014).

    Article  CAS  Google Scholar 

  26. P. Shuk, H-D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt: Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 89, 179–196 (1996).

    Article  CAS  Google Scholar 

  27. M. Drache, P. Roussel, and J-P. Wignacour: Structures and oxide mobility in Bi–Ln–O materials: Heritage of Bi2O3. Chem. Rev. 107, 80–96 (2006).

    Article  Google Scholar 

  28. S.P. Berglund, A.J. Rettie, S. Hoang, and C.B. Mullins: Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Phys. Chem. Chem. Phys. 14, 7065–7075 (2012).

    Article  CAS  Google Scholar 

  29. W. Luo, J. Wang, X. Zhao, Z. Zhao, Z. Li, and Z. Zou: Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions. Phys. Chem. Chem. Phys. 15, 1006–1013 (2013).

    Article  Google Scholar 

  30. C. Rosen, E. Banks, and B. Post: The thermal expansion and phase transitions of WO3. Acta Crystallogr. 9, 475–476 (1955).

    Article  Google Scholar 

  31. A. Waskowska, A. Pietraszko, and K. Lukaszewicz: BiVO4: X-ray diffraction study of the thermal expansion. Ferroelectrics 79, 131–134 (1988).

    Article  Google Scholar 

  32. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, and K. Kalantar-zadeh: Nanostructured tungsten oxide—Properties, synthesis, and application. Adv. Funct. Mater. 21, 2175–2196 (2011).

    Article  CAS  Google Scholar 

  33. Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, and J.J. Zou: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27, 5309–5327 (2015).

    Article  CAS  Google Scholar 

  34. B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz: Structural study of a new hexagonal form of tungsten trioxide. J. Solid State Chem. 29, 429–434 (1979).

    Article  CAS  Google Scholar 

  35. H. Kalhori, S.B. Porter, A.S. Esmaeily, M. Coey, M. Ranjbar, and H. Salamati: Morphology and structural studies of WO3 films deposited on SrTiO3 by pulsed laser deposition. Appl. Surf. Sci. 390, 43–49 (2016).

    Article  CAS  Google Scholar 

  36. C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, and U. Becker: Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 110, 10430–10435 (2006).

    Article  CAS  Google Scholar 

  37. I.M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A.L. Tóth, A. Szabó, and K. Varga-Josepovits: Stability and controlled composition of hexagonal WO3. Chem. Mater. 20, 4116–4125 (2008).

    Article  Google Scholar 

  38. P. Ju, P. Wang, B. Li, H. Fan, S. Ai, D. Zhang, and Y. Wang: A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J. 236, 430–437 (2014).

    Article  CAS  Google Scholar 

  39. M-S. Gui, W-D. Zhang, Y-Q. Chang, and Y-X. Yu: One-step hydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunction with high visible light photocatalytic activity. Chem. Eng. J. 197, 283–288 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Key Project for Basic Research of China (Grant Nos. 2014CB921104 and 2013CB922301), NSFC under Grant No. 51572085, and Natural Science Foundation of Shanghai (16ZR1409500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Li, C., Van, C.N. et al. Microstructure evolution with composition ratio in self-assembled WO3–BiVO4 hetero nanostructures for water splitting. Journal of Materials Research 32, 2790–2799 (2017). https://doi.org/10.1557/jmr.2017.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.250

Navigation