Skip to main content
Log in

The physical interpretation of the activation energy for hot deformation of Ni and Ni–30Cu alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hot compression tests on pure Ni and Ni–30Cu at 950–1150 °C and strain rates of 0.001–1 s−1 were performed to identify the physical interpretation of the apparent activation energy (Qd). For pure Ni, Qd was constant and identical to that of the self-diffusion. However, for Ni–30Cu, it decreased steadily with strain. The value of Qd was separated into thermal and mechanical parts. The thermal part was necessary to propel diffusion. For pure Ni, the mechanical part was zero at low and medium strain rates of 0.001–0.1 s−1 and the self-diffusion was the controlling mechanism. However, at 1 s−1, both the thermal and mechanical parts were needed to provide Qd. For Ni–30Cu, Qd was greater than that for the interdiffusion of Ni and Cu. The value of mechanical part decreased with increasing temperature and strain rate. Although the thermal parts for pure Ni and Ni–30Cu were nearly identical, the mechanical part for the latter was considerably higher. The difference was attributed to the strengthening effect of Cu atoms and the sluggish dynamic softening with respect to pure Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y.C. Lin, M-S. Chen, and J. Zhong: Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput. Mater. Sci. 42, 470 (2008).

    Article  CAS  Google Scholar 

  2. G.R. Ebrahimi, A. Momeni, S.M. Abbasi, and H. Monajatizadeh: Constitutive analysis and processing map for hot working of a Ni–Cu alloy. Met. Mater. Int. 19, 11 (2013).

    Article  CAS  Google Scholar 

  3. Y. Zhou, Y. Liu, X. Zhou, C. Liu, L. Yu, C. Li, and B. Ning: Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. J. Mater. Res. 30, 2090 (2015).

    Article  CAS  Google Scholar 

  4. A. Momeni, S.M. Abbasi, M. Morakabati, H. Badri, and X. Wang: Dynamic recrystallization behavior and constitutive analysis of Incoloy 901 under hot working condition. Mater. Sci. Eng., A 615, 51 (2014).

    Article  CAS  Google Scholar 

  5. C. Zhang, L. Zhang, M. Li, W. Shen, and S. Gu: Effects of microstructure and γ′ distribution on the hot deformation behavior for a powder metallurgy superalloy FGH96. J. Mater. Res. 29, 2799 (2014).

    Article  CAS  Google Scholar 

  6. S.V. Mehtonen, L.P. Karjalainen, and D.A. Porter: Hot deformation behavior and microstructure evolution of a stabilized high-Cr ferritic stainless steel. Mater. Sci. Eng., A 571, 1 (2013).

    Article  CAS  Google Scholar 

  7. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermomechanical Processing of Metallic Materials, R.W. Cahn ed. (Elsevier-Pergamon: London, 2007).

  8. A. Momeni, S. Kazemi, G.R. Ebrahimi, and A. Maldar: Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression. Int. J. Miner., Metall. Mater. 21, 36 (2014).

    Article  CAS  Google Scholar 

  9. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He: Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater. Des. 57, 568 (2014).

    Article  CAS  Google Scholar 

  10. S. Mitsche, C. Sommitch, D. Huber, M. Stockinder, and P. Poelt: Assessment of dynamic softening mechanisms in Allvac® 718Plus™ by EBSD analysis. Mater. Sci. Eng., A 528, 3754 (2011).

    Article  Google Scholar 

  11. H. Zhang, K. Zhang, S. Jiang, and Z. Lu: The dynamic recrystallization evolution and kinetics of Ni–18.3Cr–6.4Co–5.9W–4Mo–2.19Al–1.16Ti superalloy during hot deformation. J. Mater. Res. 30, 1029 (2015).

    Article  CAS  Google Scholar 

  12. D. Hull and D.J. Bacon: Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, London, 2001).

    Google Scholar 

  13. V.V. Shastry, B. Maji, M. Krishnan, and U. Ramamurty: High-temperature deformation processing maps for a NiTiCu shape memory alloy. J. Mater. Res. 26, 2484 (2011).

    Article  CAS  Google Scholar 

  14. S.M. Abbasi, A. Momeni, A. Akhondzadeh, and S.M. Ghazi Mirsaed: Microstructure and mechanical behavior of hot compressed Ti–6V–6Mo–6Fe–3Al. Mater. Sci. Eng., A 639, 21 (2015).

    Article  CAS  Google Scholar 

  15. Y.C. Lin, M-S. Chen, and J. Zhong: Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel. J. Mater. Process. Technol. 205, 308 (2008).

    Article  CAS  Google Scholar 

  16. N. Liu, Z. Li, L. Li, B. Liu, and G-Y. Xu: Processing map and hot deformation mechanism of novel nickel-free white copper alloy. Trans. Nonferrous Met. Soc. China 24, 3492 (2014).

    Article  CAS  Google Scholar 

  17. Y.V.R.K. Prasad and S. Sasidhara, eds.: Hot Working Guide, A Compendium of Processing Maps (ASM, Materials Park: Ohio, 1997).

    Google Scholar 

  18. G. Gandhi: On fracture initiation mechanisms and dynamic recrystallization during hot deformation of pure nickel. Metall. Trans. A 13, 1233 (1982).

    Article  Google Scholar 

  19. Q.G. Zheng: Characterization for dynamic recrystallization kinetics based on stress-strain curves. In Recent Developments in the Study of Recrystallization, P. Wilson, ed. (INTECH: Rijeka, Croatia, 2013); ch. 2. doi: https://doi.org/10.5772/54285.

    Google Scholar 

  20. S.M. Abbasi, M. Morakabati, A.H. Sheikhali, and A. Momeni: Hot deformation behavior of beta titanium Ti-13V-11Cr-3Al alloy. Metall. Mater. Trans. A 45, 5201 (2014).

    Article  CAS  Google Scholar 

  21. M. Shakiba, N. Parson, and X-G. Chen: Hot deformation behavior and rate-controlling mechanism in dilute Al–Fe–Si alloys with minor additions of Mn and Cu. Mater. Sci. Eng., A 636, 572 (2015).

    Article  CAS  Google Scholar 

  22. G. Neumann and C. Tuijn: Self-dissusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data (Elsevier-Pergamon, London, 2009).

    Google Scholar 

  23. K. Monma, H. Suto, and H. Oikawa: Diffusion of Ni and Cu in nickel-copper alloys. Nippon Kinzoku Gakkaishi 28, 192 (1964).

    Google Scholar 

  24. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1 (1975).

    Article  Google Scholar 

  25. S.M. Abbasi and A. Momeni: Hot working behavior of Fe–29Ni–17Co analyzed by mechanical testing and processing map. Mater. Sci. Eng., A 552, 330 (2012).

    Article  CAS  Google Scholar 

  26. E. Shapiro and G.E. Dieter: Fracture and ductility in hot torsion of nickel. Metall. Trans. 2, 1385 (1971).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, A. The physical interpretation of the activation energy for hot deformation of Ni and Ni–30Cu alloys. Journal of Materials Research 31, 1077–1084 (2016). https://doi.org/10.1557/jmr.2016.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.81

Navigation