Skip to main content
Log in

Formability and anisotropy of the mechanical properties in commercially pure titanium after various routes normal and different speed rolling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Various routes (unidirectional, cross, and three directions) normal and different speed rolling (DSR) are conducted on pure titanium sheet at 673 K and sequent 933 K annealing is followed. The results show that transverse direction (TD)-split double peak texture is kept during unidirectional rolling and a fiber basal texture is formed after cross and three-direction rolling. However, TD-split texture is preserved and rotates about 45° while the fiber basal texture is generated after cross and three direction rolling combining (DSTDR) DSR, respectively. This may be related to the changed strain path and induced shear deformation as well as thermal activation. Due to rotation of grains, the anisotropy of mechanical properties of Ti sheets decreases, especially in various DSR routes. Erichsen value is improved greatly in DSTDR specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Z.P. Zeng, Y.S. Zhang, and S. Jonsson: Deformation behaviour of commercially pure titanium during simple hot compression. Mater. Des. 30, 3105 (2009).

    Article  CAS  Google Scholar 

  2. L.C. Tao, H.Y. Wu, J.C. Leong, and C.J. Fang: Flow stress behavior of commercial pure titanium sheet during warm tensile deformation. Mater. Des. 34, 179 (2012).

    Article  Google Scholar 

  3. I. Lonardelli, N. Gey, H.R. Wenk, M. Humbert, S. Vogel, and L. Lutterotti: In situ observation of texture evolution during α → β and β → α phase transformations in titanium alloys investigated by neutron diffraction. Acta Mater. 55, 5718 (2007).

    Article  CAS  Google Scholar 

  4. Z.N. Ismarrubie, A. Ali, T. Satake, and M. Sugano: Influence of microstructures on fatigue damage mechanisms in Ti-15-3 alloy. Mater. Des. 32, 1456 (2011).

    Article  CAS  Google Scholar 

  5. N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, and B. Aditya: Failure and formability studies in warm deep drawing of Ti–6Al–4V alloy. Mater. Des. 60, 540 (2014).

    Article  CAS  Google Scholar 

  6. W. Kim, S. Yoo, and J. Lee: Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature. Scr. Mater. 62, 451 (2010).

    Article  CAS  Google Scholar 

  7. W.J. Kima, S.J. Yoo, H.T. Jeong, D.M. Kim, B.H. Choe, and J.B. Lee: Effect of the speed ratio on grain refinement and texture development in pure Ti during differential speed rolling. Scr. Mater. 64, 49 (2011).

    Article  Google Scholar 

  8. H. Zhang, W.L. Cheng, J.F. Fan, B.S. Xu, and H.B. Dong: Improved mechanical properties of AZ31 magnesium alloy sheets by repeated cold rolling and annealing using a small pass reduction. Mater. Sci. Eng., A 637, 243 (2015).

    Article  CAS  Google Scholar 

  9. X.S. Huang, K. Suzuki, Y. Chino, and M. Mabuchi: Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling. J. Alloys Compd. 632, 94 (2015).

    Article  CAS  Google Scholar 

  10. X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito: Mechanical properties of Mg–Al–Zn alloy with a tilted basal texture obtained by differential speed rolling. Mater. Sci. Eng., A 488, 214 (2008).

    Article  Google Scholar 

  11. X.S. Huang, K. Suzuki, and Y. Chino: Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scr. Mater. 63, 473 (2010).

    Article  CAS  Google Scholar 

  12. N.P. Gurao, S. Sethuraman, and S. Suwas: Evolution of texture and microstructure in commercially pure titanium with change in strain path during rolling. Metall. Mater. Trans. A 44, 1497 (2012).

    Article  Google Scholar 

  13. H. Nasiri-Abarbekoh, A. Ekrami, A.A. Ziaei-Moayyed, and M. Shohani: Effects of rolling reduction on mechanical properties anisotropy of commercially pure titanium. Mater. Des. 34, 268 (2012).

    Article  CAS  Google Scholar 

  14. J.L. Milner, F. Abu-Farha, T. Kurfess, and V.H. Hammond: Effects of induced shear deformation on microstructure and texture evolution in CP-Ti rolled sheets. Mater. Sci. Eng., A 619, 12 (2014).

    Article  CAS  Google Scholar 

  15. H. Zhang, G.S. Huang, L.F. Wang, H.J. Roven, and F.S. Pan: Enhanced mechanical properties of AZ31 magnesium alloy sheets processed by three-directional rolling. J. Alloys Compd. 575, 408 (2013).

    Article  CAS  Google Scholar 

  16. G. Gottstein and T. Al Samman: Texture development in pure Mg and Mg alloy AZ31. Mater. Sci. Forum 495–497, 623 (2005).

    Article  Google Scholar 

  17. K. Zhu, B. Bacroix, T. Chauveau, D. Chaubet, O. Castelnau: Texture evolution, and associated nucleation and growth mechanisms during annealing of a Zr alloy. Metall. Mater. Trans. A 40, 2423 (2009).

    Article  Google Scholar 

  18. M.Q. Shi, Y. Takayama, T. Umetsu, H. Kato, H. Watanabe, H. Inoue: Microstructure refinement, and texture evolution of titanium by friction roll surface processing. Mater. Trans. 50, 210 (2009).

    Article  CAS  Google Scholar 

  19. M.G. Glavicic, A.A. Salem, and S.L. Semiatin: X-ray line-broadening analysis of deformation mechanisms during rolling of commercial-purity titanium. Acta Mater. 52, 647 (2004).

    Article  CAS  Google Scholar 

  20. H. Zhang, G.S. Huang, H.J. Roven, L.F. Wang, and F.S. Pan: Influence of different rolling routes on the microstructure evolution and properties of AZ31 magnesium alloy sheets. Mater. Des. 50, 667 (2013).

    Article  CAS  Google Scholar 

  21. X.S. Huang, K. Suzukia, Y. Chino, and M. Mabuchi: Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling. J. Alloys Compd. 632, 94 (2015).

    Article  CAS  Google Scholar 

  22. H. Zhang, G.S. Huang, L.F. Wang, and J.H. Li: Improved formability of Mg–3Al–1Zn alloy by pre-stretching and annealing. Scr. Mater. 67, 495 (2012).

    Article  CAS  Google Scholar 

  23. H. Nasiri-Abarbekoh, R. Abbasi, A. Ekrami, and A.A. Ziaei-Moayyed: Notch-texture strengthening mechanism in commercially pure titanium thin sheets. Mater. Des. 55, 683 (2014).

    Article  CAS  Google Scholar 

  24. J.M. Liu and S.S. Chou: Effect of anisotropy in commercial purity titanium on deep drawability at elevated temperatures. Mater. Sci. Technol. 16, 1037 (2000).

    Article  CAS  Google Scholar 

  25. Y. Murayama, K. Obara, and K. Ikeda: Effect of twinning on deformation of textured commercially-pure Ti sheets under plane stress states. Mater. Trans. 34, 801 (1993).

    Article  CAS  Google Scholar 

  26. X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito: Improvement of formability of Mg–Al–Zn alloy sheet at low temperatures using differential speed rolling. J. Alloys Compd. 470, 263 (2009).

    Article  CAS  Google Scholar 

  27. X.S. Huang, K. Suzuki, M. Yuasa, and Y. Chino: Microstructural and textural evolution of pure titanium during differential speed rolling and subsequent annealing. J. Mater. Sci. 49, 3166 (2014).

    Article  CAS  Google Scholar 

  28. Q. Wang, Y.F. Yin, Q.Y. Sun, L. Xiao, and J. Sun: Gradient nano microstructure and its formation mechanism in pure titanium produced by surface rolling treatment. J. Mater. Res. 29, 569 (2014).

    Article  CAS  Google Scholar 

  29. S.B. Yi, J. Bohlen, F. Heinemann, and D. Letzig: Mechanical anisotropy and deep drawing behavior of AZ31 and ZE10 magnesium alloy sheets. Acta Mater. 58, 592 (2010).

    Article  CAS  Google Scholar 

  30. J. Adamus and P. Lacki: Possibility of the increase in titanium sheets’ drawability. Key Eng. Mater. 549, 31 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of China (51504162), National Natural Science Foundation of China (51375328) and (51405500), Shanxi Province Science Foundation for Youths (2016021063), Chongqing Basic Frontier Research Program “Design, Manufacture and Performance Evolution of Light Alloy Automotive Components” (cstc2013jcyjC60001), Pre-research Foundation (9140A17040114KG01242), Fundamental Research Funds by Taiyuan University of Technology (tyut-rc201523a) and (2015QN011), and Research Project Supported by Shanxi Scholarship council of China (2015036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, H., Huang, G. et al. Formability and anisotropy of the mechanical properties in commercially pure titanium after various routes normal and different speed rolling. Journal of Materials Research 31, 3372–3380 (2016). https://doi.org/10.1557/jmr.2016.352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.352

Navigation