Skip to main content
Log in

Characteristics of metadynamic recrystallization of Nimonic 80A superalloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The metadynamic recrystallization (MDRX) behaviors in deformed Nimonic 80A superalloy were investigated by isothermal interrupted hot compression tests on a Gleeble-1500 thermo-mechanical simulator. Compression tests were performed using double hit schedules in the deformation temperature range of 1050–1150 °C, the interpass time range of 0.5–10 s, the strain rate range of 0.01–4 s−1, and the prestrain range of 0.30–0.50. To characterize the MDRX behaviors of the alloy, the effects of deformation temperature, strain rate, and prestrain on the metadynamic softening and recrystallized grain size were analyzed. The results reveal that the effects of deformation temperature and strain rate on the metadynamic softening fraction and recrystallized grain size are significant. However, the effects of prestrain on the metadynamic softening fraction and recrystallized grain size are not very marked and can be neglected. Then, by regression analysis of the experimental data, the MDRX kinetic model and recrystallized grain size model were proposed. The predicted results show good agreement with the experimental ones, which indicates that the proposed models can give an accurate prediction of the softening behaviors and microstructural evolution for Nimonic 80A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. Y.L. Xu, C.X. Yang, Q.X. Ran, P.F. Hu, X.S. Xiao, X.L. Cao, and G.Q. Jia: Microstructure evolution and stress-rupture properties of Nimonic 80A after various heat treatments. Mater. Des. 47, 218–226 (2013).

    Article  CAS  Google Scholar 

  2. Y.L. Xu, Q.M. Jin, X.S. Xiao, X.L. Cao, G.Q. Jia, Y.M. Zhu, and H.J. Yin: Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A. Mater. Sci. Eng., A 528 (13–14), 4600–4607 (2011).

    Article  Google Scholar 

  3. H.S. Jeong, J.R. Cho, and H.C. Park: Microstructure prediction of Nimonic 80A for large exhaust valve during hot closed die forging. J. Mater. Process. Technol. 162–163, 504–511 (2005).

    Article  Google Scholar 

  4. B. Wilthan, K. Preis, R. Tanzer, W. Schützenhöfer, and G. Pottlacher: Thermophysical properties of the Ni-based alloy Nimonic 80A up to 2400 K, II. J. Alloys Compd. 452 (1), 102–104 (2008).

    Article  CAS  Google Scholar 

  5. B. Wilthan, R. Tanzer, W. Schützenhöfer, and G. Pottlacher: Thermophysical properties of the Ni-based alloy Nimonic 80A up to 2400K, III. Thermochim. Acta 465 (1–2), 83–87 (2007).

    Article  CAS  Google Scholar 

  6. D. Bombac, M. Brojan, M. Tercelj, and R. Turk: Response to hot deformation conditions and microstructure development of Nimonic 80A superalloy. Mater. Manuf. Processes 24 (6), 644–648 (2009).

    Article  CAS  Google Scholar 

  7. B.H. Tian, C. Lind, E. Schafler, and O. Paris: Evolution of microstructures during dynamic recrystallization and dynamic recovery in hot deformed Nimonic 80a. Mater. Sci. Eng., A 367 (1–2), 198–204 (2004).

    Article  Google Scholar 

  8. M. Kazeminezhad: On the modeling of the static recrystallization considering the initial grain size effects. Mater. Sci. Eng., A 486 (1–2), 202–207 (2008).

    Article  Google Scholar 

  9. K.P. Rao, Y.K.D.V. Prasad, and E.B. Hawbolt: Study of fractional softening in multi-stage hot deformation. J. Mater. Process. Technol. 77 (1), 166–174 (1998).

    Article  Google Scholar 

  10. F. Chen and Z.S. Cui: Mesoscale simulation of microstructure evolution during multi-stage hot forging processes. Modell. Simul. Mater. Sci. Eng. 20 (4), 045008(pp. 16) (2012).

    Article  Google Scholar 

  11. S. Serajzadeh: A study on kinetics of static and metadynamic recrystallization during hot rolling. Mater. Sci. Eng., A 448 (1–2), 146–153 (2007).

    Article  Google Scholar 

  12. S.D. Gu, L.W. Zhang, C.X. Yue, J.H. Ruan, J.L. Zhang, and H.J. Gao: Multi-field coupled numerical simulation of microstructure evolution during the hot rolling process of GCr15 steel rod. Comput. Mater. Sci. 50 (7), 1951–1957 (2011).

    Article  CAS  Google Scholar 

  13. S. Solhjoo and R. Ebrahimi: Prediction of no-recrystallization temperature by simulation of multi-pass flow stress curves from single-pass curves. J. Mater. Sci. 45 (21), 5960–5966 (2010).

    Article  CAS  Google Scholar 

  14. C. Roucoules, S. Yue, and J.J. Jonas: Effect of alloying elements on metadynamic recrystallization in HSLA steels. Metall. Mater. Trans. A 26 (1), 181–190 (1995).

    Article  Google Scholar 

  15. S.H. Cho and Y.C. Yoo: Determination of the metadynamic recrystallization parameter for AISI 304 stainless steel. J. Mater. Sci. Lett. 18 (12), 987–989 (1999).

    Article  CAS  Google Scholar 

  16. P.D. Hodgson: Microstructure modelling for property prediction and control. J. Mater. Process. Technol. 60 (1), 27–33 (1996).

    Article  Google Scholar 

  17. R.A.P. Djaic and J.J. Jonas: Recrystallization of high carbon steel between intervals of high temperature deformation. Met. Trans. 4 (2), 621–624 (1973).

    Article  CAS  Google Scholar 

  18. K.H. Jung, H.W. Lee, and Y.T. Im: Numerical prediction of austenite grain size in a bar rolling process using an evolution model based on a hot compression test. Mater. Sci. Eng., A 519 (1–2), 94–104 (2009).

    Article  Google Scholar 

  19. A.M. Elwazri, P. Wanjara, and S. Yue: Dynamic recrystallization of austenite in microalloyed high carbon steels. Mater. Sci. Eng., A 339, 209–215 (2003).

    Article  Google Scholar 

  20. B. Ma, Y. Peng, Y.F. Liu, and B. Jia: Modeling of metadynamic recrystallization kinetics after hot deformation of low-alloy steel Q345B. J. Cent. South Univ. Technol. 17, 911–917 (2010).

    Article  CAS  Google Scholar 

  21. Y.C. Lin, M.S. Chen, and J. Zhong: Study of metadynamic recrystallization behaviors in a low alloy steel. J. Mater. Process. Technol. 209 (5), 2477–2482 (2009).

    Article  CAS  Google Scholar 

  22. Y.C. Lin and M.S. Chen: Study of microstructural evolution during metadynamic recrystallization in a low-alloy steel. Mater. Sci. Eng., A 501 (1–2), 229–234 (2009).

    Article  Google Scholar 

  23. Y.C. Lin, L.T. Li, and Y.C. Xia: A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy. Comput. Mater. Sci. 50 (7), 2038–2043 (2011).

    Article  CAS  Google Scholar 

  24. J. Liu, Y.G. Liu, H. Lin, and M.Q. Li: The metadynamic recrystallization in the two-stage isothermal compression of 300M steel. Mater. Sci. Eng., A 565, 126–131 (2013).

    Article  CAS  Google Scholar 

  25. L. Cheng, H. Chang, B. Tang, H.C. Kou, and J.S. Li: Characteristics of metadynamic recrystallization of a high Nb containing TiAl alloy. Mater. Lett. 92, 430–432 (2013).

    Article  CAS  Google Scholar 

  26. C.X. Yue, L.W. Zhang, S.L. Liao, and H.J. Gao: Mathematical models for predicting the austenite grain size in hot working of GCr15 steel. Comput. Mater. Sci. 45 (2), 462–466 (2009).

    Article  CAS  Google Scholar 

  27. A. Yanagida and J. Yanagimoto: Formularization of softening fractions and related kinetics for static recrystallization using inverse analysis of double compression test. Mater. Sci. Eng., A 487 (1–2), 510–517 (2008).

    Article  Google Scholar 

  28. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Hot deformation and recrystallization of austenitic stainless steel: Part II. Post-deformation recrystallization. Metall. Mater. Trans. A 39 (6), 1371–1381 (2008).

    Article  Google Scholar 

  29. S. Choi and Y. Lee: A new approach to predicting partial recrystallization in the multi-pass hot rolling process. Met. Mater. Int. 8 (1), 15–23 (2002).

    Article  CAS  Google Scholar 

  30. F. Chen, Z.S. Cui, D.S. Sui, and B. Fu: Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part III: Metadynamic recrystallization. Mater. Sci. Eng., A 540, 46–54 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Zhang, C., Zhang, L. et al. Characteristics of metadynamic recrystallization of Nimonic 80A superalloy. Journal of Materials Research 30, 538–546 (2015). https://doi.org/10.1557/jmr.2015.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.7

Navigation