Skip to main content
Log in

Importance of dislocation pile-ups on the mechanical properties and the Bauschinger effect in microcantilevers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Copper microcantilevers were produced by focused ion beam milling and tested in situ using a scanning electron microscope. To provide different interfaces for piling up dislocations, cantilevers were fabricated to be single crystalline, bicrystalline, or single crystalline with a slit in the region of the neutral axis. The aim of the experiment was to study the influence of dislocation pile-ups on (i) strength and (ii) Bauschinger effects in micrometer-sized, focused ion beam milled bending cantilevers. The samples were loaded monotonically for several times under displacement control. Even though the cantilevers exhibited the same nominal strain gradient the strength varied by 34% within the three cantilever geometries. The Bauschinger effect can be promoted and prohibited by the insertion of different interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. C. Motz, T. Schöberl, and R. Pippan: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53 (15), 4269 (2005).

    Article  CAS  Google Scholar 

  2. J. Gong and A.J. Wilkinson: A microcantilever investigation of size effect, solid-solution strengthening and second-phase strengthening for prism slip in alpha-Ti. Acta Mater. 59 (15), 5970 (2011).

    Article  CAS  Google Scholar 

  3. E. Demir, D. Raabe, and F. Roters: The mechanical size effect as a mean-field breakdown phenomenon: Example of microscale single crystal beam bending. Acta Mater. 58 (5), 1876 (2010).

    Article  CAS  Google Scholar 

  4. D. Kiener, C. Motz, W. Grosinger, D. Weygand, and R. Pippan: Cyclic response of copper single crystal micro-beams. Scr. Mater. 63 (5), 500 (2010).

    Article  CAS  Google Scholar 

  5. C. Kirchlechner, W. Grosinger, M.W. Kapp, P.J. Imrich, J.S. Micha, O. Ulrich, J. Keckes, G. Dehm, and C. Motz: Investigation of reversible plasticity in a micron-sized, single crystalline copper bending beam by x-ray μ Laue diffraction. Philos. Mag. 92 (25–27), 3231 (2012).

    Article  CAS  Google Scholar 

  6. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

    Article  CAS  Google Scholar 

  7. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56 (6), 654 (2011).

    Article  CAS  Google Scholar 

  8. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42 (2), 475 (1994).

    Article  CAS  Google Scholar 

  9. J.S. Stölken and A.G. Evans: A microbend test method for measuring the plasticity length scale. Acta Mater. 46 (14), 5109 (1998).

    Article  Google Scholar 

  10. A.J. Bushby and D.J. Dunstan: Size effects in yield and plasticity under uniaxial and non-uniform loading: Experiment and theory. Philos. Mag. 91 (7–9), 1037 (2010).

    Google Scholar 

  11. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305 (5686), 986 (2004).

    Article  CAS  Google Scholar 

  12. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86 (33–35), 5567 (2006).

    Article  CAS  Google Scholar 

  13. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56 (3), 580 (2008).

    Article  CAS  Google Scholar 

  14. J.Y. Kim, D.C. Jong, and J.R. Greer: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58 (7), 2355 (2010).

    Article  CAS  Google Scholar 

  15. C. Motz, D. Weygand, J. Senger, and P. Gumbsch: Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 56 (6), 1942 (2008).

    Article  CAS  Google Scholar 

  16. S. Suresh: Fatigue of Materials (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  17. O.B. Pedersen, L.M. Brown, and W.M. Stobbs: The Bauschinger effect in copper. Acta Metall. 29 (11), 1843 (1981).

    Article  CAS  Google Scholar 

  18. J. Rajagopalan, C. Rentenberger, H. Peter Karnthaler, G. Dehm, and M.T.A. Saif: In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals. Acta Mater. 58 (14), 4772 (2010).

    Article  CAS  Google Scholar 

  19. Y. Xiang and J.J. Vlassak: Bauschinger and size effects in thin-film plasticity. Acta Mater. 54 (20), 5449 (2006).

    Article  CAS  Google Scholar 

  20. J. Gong and A.J. Wilkinson: Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams. Acta Mater. 57 (19), 5693 (2009).

    Article  CAS  Google Scholar 

  21. D. Raabe, D. Ma, and F. Roters: Smaller is stronger: The effect of strain hardening. Acta Mater. 55 (20), 4567 (2007).

    Article  CAS  Google Scholar 

  22. G. Moser, H. Felber, B. Rashkova, P.J. Imrich, C. Kirchlechner, W. Grosinger, C. Motz, G. Dehm, and D. Kiener: Sample preparation by metallography and focused ion beam for nanomechanical testing. Prakt. Metallogr. 49 (6), 343 (2012).

    Article  CAS  Google Scholar 

  23. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318 (5848), 251 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. Z. F. Zhang from the Shenyang National Laboratory (China) for providing one macroscopic bicrystal, Prof. C. Motz from Universität des Saarlandes, Saarbrücken (Germany) for valuable discussion, and Dr. S. Brinckmann from the MPIE for additional FEM analysis justifying the assumed stress distribution in the cantilever. Financial support by the FWF Austrian Science Fund through project number P24429-N20 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kirchlechner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapp, M.W., Kirchlechner, C., Pippan, R. et al. Importance of dislocation pile-ups on the mechanical properties and the Bauschinger effect in microcantilevers. Journal of Materials Research 30, 791–797 (2015). https://doi.org/10.1557/jmr.2015.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.49

Navigation