Skip to main content
Log in

Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructures, high-temperature mechanical properties, and fracture behavior of Mg–Gd–Y–Zr alloy components produced by low-pressure sand casting with different Gd and Zr contents, have been investigated. The ultimate tensile strength (UTS), tensile yield strength, and total elongation (EL) were measured within the 25–300 °C range. At the same temperatures, the UTS and yield strength (YS) of the T6 treated Mg–xGd–3Y–0.5Zr alloys increased with Gd content increasing from 9 to 11%, which was attributed to the improvement of precipitation strengthening. Increasing the Zr content from 0.3 to 0.5% leads to dramatic decrease in grain size and improved tensile properties of T6 treated Mg–10Gd–3Y–yZr alloys which is considered to be due to grain-boundary strengthening. With the increase of tensile temperature, both UTS and YS of the T6 treated Mg–xGd–3Y–yZr alloys initially increase and then decrease. The β′ precipitates provide important strengthening sources in experimental alloys, especially at elevated temperatures. The Mg–10Gd–3Y–0.5Zr alloy shows good combination of strength and EL within the 25–300 °C range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Magnesium: Properties-application-potential. Mater. Sci. Eng., A 302(1), 37 (2001).

    Google Scholar 

  2. A.A. Luo: Magnesium casting technology for structural applications. J. Magnesium Alloys 1(1), 2 (2013).

    CAS  Google Scholar 

  3. J.T. Carter, A.R. Melo, V. Savic, L.G. Hector, Jr., and P.E. Krajewski: Structural evaluation of an experimental aluminum/magnesium decklid. SAE Int. J. Mater. Manuf. 4(1), 166 (2011).

    Google Scholar 

  4. K. Hirai, H. Somekawa, Y. Takigawa, and K. Higashi: Effect of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater. Sci. Eng., A 403(1–2), 276 (2005).

    Google Scholar 

  5. B. Kondori and R. Mahmudi: Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy. Mater. Sci. Eng., A. 527(7–8), 2014 (2010).

    Google Scholar 

  6. R. Mahmudi, F. Kabirian, and Z. Nematollahi: Microstructure stability and high-temperature mechanical properties of AZ91 and AZ91+2RE magnesium alloys. Mater. Des. 32(5), 2583 (2011).

    CAS  Google Scholar 

  7. K. Hono, C.L. Mendis, T.T. Sasaki, and K. Oh-ishi: Towards the development of heat-treatable high-strength wrought Mg alloys. Scr. Mater. 60(7), 710 (2010).

    Google Scholar 

  8. A.R. Antoniswamy, E.M. Taleff, L.G. Hector, Jr., and J.T. Carter: Plastic deformation and ductility of magnesium AZ31B-H24 alloy sheet from 22 to 450 °C. Mater. Sci. Eng., A 631, 1 (2015).

    CAS  Google Scholar 

  9. J.F. Nie and B.C. Muddle: Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C. Scr. Mater. 40(10), 1089 (1999).

    CAS  Google Scholar 

  10. I.A. Anyanwu, S. Kamado, and Y. Kojima: Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys. Mater. Trans. 42(7), 1206 (2001).

    CAS  Google Scholar 

  11. S.M. He: Study on the microstructure evolution, properties and fracture behavior of Mg-Gd-Y-Zr (Ca) alloys. Ph. D. Thesis School of Materials Science and Engineering, Shanghai Jiao Tong University, 2007.

  12. Y.L. Mu, Q.D. Wang, M.L. Hu, V. Janik, and D.D. Yin: Elevated-temperature impact toughness of Mg-(Gd,Y)-Zr alloy. Scr. Mater. 68(11), 885 (2013).

    CAS  Google Scholar 

  13. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 421(1–2), 309 (2006).

    CAS  Google Scholar 

  14. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloys Compd. 427(1), 316 (2007).

    CAS  Google Scholar 

  15. V. Janik, D.D. Yin, Y.D. Wang, S.M. He, C.J. Chen, Z. Chen, and C.J. Boehlert: The elevated-temperature mechanical behavior of peak-aged Mg-10Gd-3Y-0.4Zr alloy. Mater. Sci. Eng., A. 528(7–8), 3105 (2011).

    Google Scholar 

  16. B.L. Mordike: Creep-resistant magnesium alloys. Mater. Sci. Eng., A 324(1–2), 103 (2002).

    Google Scholar 

  17. W.B. Du, Y.F. Wu, Z.R. Nie, X.K. Su, and T.Y. Zuo: Effects of rare earth and alkaline earth on magnesium alloys and their applications status. Rare Met. Mater. Eng. 35, 1345 (2013).

    Google Scholar 

  18. J.L. Li, Y.Q. Ma, R.S. Chen, and W. Ke: Effects of shrinkage porosity on mechanical properties of a sand cast Mg-Y-RE (WE54) alloy. Mater. Sci. Forum 747–748, 390 (2013).

    Google Scholar 

  19. W. Wang, Y.G. Huang, G.H. Wu, Q.D. Wang, M. Sun, and W.J. Ding: Influence of flux containing YCl3 additions on purifying effectiveness and properties of Mg-10Gd-3Y-0.5Zr alloy. J. Alloys Compd. 480(2), 386 (2009).

    CAS  Google Scholar 

  20. W.C. Liu, L.K. Jiang, L. Cao, J. Mei, G.H. Wu, S. Zhang, L. Xiao, S.H. Wang, and W.J. Ding: Fatigue behavior and plane-strain fracture toughness of sand-cast Mg-10Gd-3Y-0.5Zr magnesium alloy. Mater. Des. 59, 466 (2014).

    CAS  Google Scholar 

  21. F.J. Edler, G. Lagrené, and R. Siepe: Thin-walled Mg structural parts by a low-pressure sand casting process. In Magnesium Alloys and Their Applications, K.U. Kainer ed.; WILEY-VCH Verlag GmbH: Weinheim, 2000; pp. 553–557.

    Google Scholar 

  22. H.R. Jafari Nodooshan, W.C. Liu, G.H. Wu, Y. Rao, C.X. Zhou, S.P. He, W.J. Ding, and R. Mahmudi: Effect of Gd on microstructure and mechanical properties of Mg-Gd-Y-Zr alloys under peak-aged condition. Mater. Sci. Eng., A 615, 79 (2014).

    Google Scholar 

  23. S.Q. Liang, D.K. Guan, X.P. Tan, L. Chen, and Y. Tang: Effect of isothermal aging on the microstructure and properties of as-cast Mg-Gd-Y-Zr alloy. Mater. Sci. Eng., A. 528(3), 1589 (2011).

    Google Scholar 

  24. J. Wang, J. Meng, D.P. Zhang, and D.X. Tang: Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys. Mater. Sci. Eng., A 456(1–2), 78 (2007).

    Google Scholar 

  25. L. Gao, R.S. Chen, and E.H. Han: Effect of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 481(1–2), 379 (2009).

    CAS  Google Scholar 

  26. L.K. Jiang, W.C. Liu, G.H. Wu, and W.J. Ding: Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg-Gd-Y-Zr alloy. Mater. Sci. Eng., A 612, 293 (2014).

    CAS  Google Scholar 

  27. M. Sun, G.H. Wu, W. Wang, and W.J. Ding: Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Ymagnesium alloy. Mater. Sci. Eng., A 523(1–2), 145 (2009).

    Google Scholar 

  28. X.Y. Fang, D.Q. Yi, J.F. Nie, X.J. Zhang, B. Wang, and L.R. Xiao: Effect of Zr, Mn and Sc additions on the grain size of Mg-Gd alloy. J. Alloys Compd. 470(1–2), 311 (2009).

    CAS  Google Scholar 

  29. J.W. Chang, X.W. Guo, S.M. He, P.H. Fu, L.M. Ping, and W.J. Ding: Investigation of the corrosion for Mg-xGd-3Y-0.4Zr(x=6, 8, 10, 12 wt %) alloys in a peak-aged condition. Corros. Sci. 50(1), 166 (2008).

    CAS  Google Scholar 

  30. K.Y. Zheng, J. Dong, X.Q. Zeng, and W.J. Ding: Effect of precipitation aging on the fracture behavior of Mg-11Gd-2Nd-0.4Zr cast alloy. Mater. Charact. 59(7), 857 (2008).

    CAS  Google Scholar 

  31. D.Q. Li, Q.D. Wang, and W.J. Ding: Characterization of phase in Mg-4Y-4Sm-0.5Zr alloy processed by heat treatment. Mater. Sci. Eng., A 428(1–2), 295 (2006).

    Google Scholar 

  32. M. Qian and A. Das: Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. Scr. Mater. 54(5), 881 (2006).

    CAS  Google Scholar 

  33. E.E. Emley: Principles of Magnesium Technology (Pergamon Press, Pergamon, Oxford, England, 1966); p. 126.

    Google Scholar 

  34. Z.K. Peng, X.M. Zhang, J.M. Chen, Y. Xiao, and H. Jiang: Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium. Mater. Sci. Technol. 21(6), 722 (2005).

    CAS  Google Scholar 

  35. J.F. Nie: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48(8), 109 (2003).

    Google Scholar 

  36. Q.M. Peng, Y.M. Wu, D.Q. Fang, J. Meng, and L.M. Wang: Mircostructure and properties of Mg-7Gd alloy containing Y. J. Alloys Compd. 430(1–2), 250 (2007).

    Google Scholar 

  37. P.J. APPs, H. Karimzadeh, J.F. King, and G.W. Lorimer: Precipitation reactions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scr. Mater. 48(8), 1023 (2003).

    CAS  Google Scholar 

  38. J.A. Yasi, L.G. Hector, Jr., and D.R Trinkle: First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 58(17), 5704 (2010).

    CAS  Google Scholar 

  39. J.A. Yasi, L.G. Hector, Jr., and D.R Trinkle: Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data. Acta Mater. 59(14), 5652 (2011).

    CAS  Google Scholar 

  40. J.A. Yasi, L.G. Hector, Jr., and D.R Trinkle: Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 60(5), 2350 (2012).

    CAS  Google Scholar 

  41. K. Zhang, X.G. Li, Y.J. Li, and M.L. Ma: Effect of Gd content on microstructure and mechanical properties of Mg-Y-RE-Zr alloys. Trans. Nonferrous Met. Soc. China 18(1), 12 (2008).

    CAS  Google Scholar 

  42. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama: Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater. Trans. 44(4), 445 (2003).

    CAS  Google Scholar 

  43. D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, and J. Zheng: Effects of heat treatments on microstructure and mechanical properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. J. Alloys Compd. 509(5), 1396 (2011).

    Google Scholar 

  44. L. Gao, R.S. Chen, and E.H. Han: Fracture behavior of high strength Mg-Gd-Y-Zr magnesium alloy. Trans. Nonferrous Met. Soc. China 20(7), 1217 (2010).

    CAS  Google Scholar 

  45. M.R. Barnett: Twinning and ductility of magnesium alloys part I: “Tension” twin. Mater. Sci. Eng., A. 464(1–2), 1 (2007).

    Google Scholar 

  46. X.Y. Shi, A.A. Luo, S.C. Sutton, L. Zeng, S.Y. Wang, X.Q. Zeng, D.J. Li, and W.J. Ding: Twinning behavior and lattice rotation in a Mg-Gd-Y-Zr alloy under ballistic impact. J. Alloys Compd. 650, 622 (2015).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project is sponsored by the National Natural Science Foundation of China (Nos. 51275295 and 51201102), the Shanghai Rising-Star Program (No. 14QB1403200), Research Fund for the Doctoral Program of Higher Education of China (Nos. 20120073120011 and 20130073110052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, G., Chen, A. et al. Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. Journal of Materials Research 30, 3461–3473 (2015). https://doi.org/10.1557/jmr.2015.306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.306

Navigation