Skip to main content
Log in

Ion irradiation and radiation effect characterization at the JANNUS-Saclay triple beam facility

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

JANNUS (Joint Accelerators for Nanosciences and Nuclear Simulation), the unique triple beam facility in Europe, offers the possibility to produce three ion beams simultaneously for nuclear recoil damage and implantation of a large array of ions for well-controlled modeling-oriented experiments. The first triple beam irradiation was performed in March 2010. Along with irradiation developments, continuous efforts have been made to implement ex situ and in situ characterization tools. In this study, we set out the present status of the JANNUS facility of the Saclay site. We focus on the instrumentation used for conducting multi-ion beam irradiations and implantations as well as for characterizing bombarded samples. On-line control of irradiation parameters, in situ modification monitoring using Raman spectroscopy or ion beam induced luminescence, and ex situ characterization by ion beam surface analysis [Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA), and elastic recoil detection analysis (ERDA)] of implanted samples are detailed. Some examples of single, dual, and triple beam irradiation configurations are presented. Access to the facility is provided by the French network EMIR for national and international users (http://emir.in2p3.fr/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. G.S. Was and R.S. Averback: Radiation damage using ion beams. Compr. Nucl. Mater. 1, 195 (2012).

    Article  CAS  Google Scholar 

  2. P. Hosemann: Studying radiation damage in structural materials by using ion accelerators. Rev. Accel. Sci. Technol. 4, 161 (2011).

    Article  Google Scholar 

  3. S. Hamada, Y. Miwa, D. Yamaki, Y. Katano, T. Nakazawa, and K. Noda: Development of a Triple Beam Irradiation Facility (Elsevier Science Bv, Sendai, Japan, 1997); p. 383.

    Google Scholar 

  4. D. Bufford and K. Hattar: The design and implementation of a single, double, and triple concurrent beam in situ ion irradiation TEM facility. Microsc. Microanal. 20, 1562 (2014).

    Article  Google Scholar 

  5. G.A. Norton and S.E. Stodola: Trends and applications for MeV electrostatic ion beam accelerators. Appl. Surf. Sci. 310, 89 (2014).

    Article  CAS  Google Scholar 

  6. G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, and M. Hackett: Emulation of reactor irradiation damage using ion beams. Scr. Mater. 88, 33 (2014).

    Article  CAS  Google Scholar 

  7. Y. Serruys, P. Trocellier, S. Miro, E. Bordas, M.O. Ruault, O. Kaïtasov, S. Henry, O. Leseigneur, Th. Bonnaillie, S. Pellegrino, S. Vaubaillon, and D. Uriot: JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic modelling. J. Nucl. Mater. 386, 967 (2009).

    Article  CAS  Google Scholar 

  8. S. Pellegrino, P. Trocellier, S. Miro, Y. Serruys, É. Bordas, H. Martin, N. Chaâbane, S. Vaubaillon, J.P. Gallien, and L. Beck: The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis. Nucl. Instrum. Methods Phys. Res., Sect. B 273, 213 (2012).

    Article  CAS  Google Scholar 

  9. A. Prokhodtseva, B. Decamps, and R. Schaeublin: Comparison between bulk and thin foil ion irradiation of ultra high purity Fe. J. Nucl. Mater. 442, 786 (2013).

    Article  CAS  Google Scholar 

  10. D. Brimbal, E. Meslin, J. Henry, B. Décamps, and A. Barbu: He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe–5.40 wt.% Cr: A transmission electron microscopy study. Acta Mater. 61, 4757 (2013).

    Article  CAS  Google Scholar 

  11. A. Bhattacharya, E. Meslin, J. Henry, C. Pareige, B. Décamps, C. Genevois, D. Brimbal, and A. Barbu: Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys. Acta Mater. 78, 394 (2014).

    Article  CAS  Google Scholar 

  12. L. Beck, A. de Château-Thierry, J.P. Frontier, Ph. Trouslard, and S. Pellegrino: 25 years of IBA teaching experience at the National Institute for Nuclear Science and Technology, France. Nucl. Instrum. Methods Phys. Res., Sect. B 219, 394 (2004).

    Article  CAS  Google Scholar 

  13. A. Jankowiak, C. Grygiel, I. Monnet, Y. Serruys, C. Colin, S. Miro, L. Gelebart, L. Gosmain, and J-M. Costantini: Advanced SiC fiber strain behavior during ion beam irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 144 (2013).

    Article  CAS  Google Scholar 

  14. J. Huguet-Garcia, A. Jankowiak, S. Miro, Y. Serruys, and J-M. Costantini: Ion irradiation effects on third generation SiC fibers in elastic and inelastic energy loss regimes. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 93 (2014).

    Article  CAS  Google Scholar 

  15. N. Dely, Y. Ngono-Ravache, J-M. Ramillon, and E. Balanzat: Oxygen consumption in EPDM irradiated under different oxygen pressures and at different LET. Nucl. Instrum. Methods Phys. Res., Sect. B 236, 145 (2005).

    Article  CAS  Google Scholar 

  16. E. Meslin, B. Radiguet, and M. Loyer-Prost: Radiation-induced precipitation in a ferritic model alloy: An experimental and theoretical study. Acta Mater. 61, 6246 (2013).

    Article  CAS  Google Scholar 

  17. S. Pellegrino, L. Thomé, A. Debelle, S. Miro, and P. Trocellier: Radiation effects in carbides: TiC and ZrC versus SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 103 (2014).

    Article  CAS  Google Scholar 

  18. S. Miro, J-M. Costantini, S. Sorieul, L. Gosmain, and L. Thomé: Recrystallization of amorphous ion implanted silicon carbide after thermal annealing. Philos. Mag. Lett. 92, 633 (2012).

    Article  CAS  Google Scholar 

  19. P. Trocellier, S. Miro, Y. Serruys, S. Vaubaillon, S. Pellegrino, S. Agarwal, S. Moll, and L. Beck: Study of helium migration in nuclear materials at Jannus–Saclay. Nucl. Instrum. Methods Phys. Res., Sect. B 331, 55 (2014).

    Article  CAS  Google Scholar 

  20. L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, and Y. Serruys: HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance. J. Nucl. Mater. 409, 72 (2011).

    Article  CAS  Google Scholar 

  21. L.L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, and A. Kimura: Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance. Phys. Rev. B 82, 184103 (2010).

    Article  CAS  Google Scholar 

  22. L. Thomé, A. Debelle, F. Garrido, P. Trocellier, Y. Serruys, G. Velisa, and S. Miro: Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl. Phys. Lett. 102, 141906 (2013).

    Article  CAS  Google Scholar 

  23. L. Thomé, G. Velisa, A. Debelle, S. Miro, F. Garrido, P. Trocellier, and Y. Serruys: Behavior of nuclear materials irradiated with a dual ion beam. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 219 (2014).

    Article  CAS  Google Scholar 

  24. D. Brimbal, S. Miro, V. de Castro, S. Poissonnet, P. Trocellier, Y. Serruys, and L. Beck: Application of Raman spectroscopy to the study of hydrogen in an ion irradiated oxide-dispersion strengthened Fe–12Cr steel. J. Nucl. Mater. 447, 179 (2014).

    Article  CAS  Google Scholar 

  25. V. de Castro, M. Briceno, S. Lozano-Perez, P. Trocellier, S G. Roberts, and R. Pareja: TEM characterization of simultaneous triple ion implanted ODS Fe12Cr. J. Nucl. Mater. 455, 157 (2014).

    Article  CAS  Google Scholar 

  26. M. Ogur, N. Yamaji, T. Higuchi, M. Imai, A. Itoh, N. Imanishi, and K. Nakata: Thermal behavior of hydrogen in helium-implanted high-purity SUS316L. Nucl. Instrum. Methods Phys. Res., Sect. B 136, 483 (1998).

    Article  Google Scholar 

  27. G.D. Tolstolutskaya, V.V. Ruzhytskiy, I.E. Kopanets, S.A. Karpov, V.V. Bryk, V.N. Voyevodin, and F.A. Garner: Displacement and helium-induced enhancement of hydrogen and deuterium retention in ion-irradiated 18Cr10NiTi stainless steel. J. Nucl. Mater. 356, 136 (2006).

    Article  CAS  Google Scholar 

  28. I. Takagi, K. Matsuoka, T. Tanaka, M. Akiyoshi, and T. Sasaki: Hydrogen trapping in 3He-irradiated Fe. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 117 (2013).

    Article  CAS  Google Scholar 

  29. M-L. Lescoat, J. Ribis, A. Gentils, O. Kaïtasov, Y. de Carlan, and A. Legris: In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J. Nucl. Mater. 428, 176 (2012).

    Article  CAS  Google Scholar 

  30. K. Hattar, D.C. Bufford, and D.L. Buller: Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 56 (2014).

    Article  CAS  Google Scholar 

  31. D. Kaoumi, J. Adamson, and M. Kirk: Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa). J. Nucl. Mater. 445, 12 (2014).

    Article  CAS  Google Scholar 

  32. T.E. Levine, N. Yu, P. Kodali, KC. Walter, M. Nastasi, J.R. Tesmer, C.J. Maggiore, and J.W. Mayer: In situ ion-beam analysis and modification of sol-gel zirconia thin films. Nucl. Instrum. Methods Phys. Res., Sect. B 106, 597 (1995).

    Article  CAS  Google Scholar 

  33. A. Canizarès, G. Gimbretière, Y.A. Tobon, N. Raimboux, R. Omnée, M. Perdicakis, B. Muzeau, E. Leoni, M.S. Alam, E. Mendes, D. Simon, G. Matzen, C. Corbel, M.F. Barthe, and P. Simon: In situ Raman monitoring of materials of materials under irradiation: Study of uranium dioxide alteration by water radiolysis. J. Raman Spectrosc. 43, 1492 (2012).

    Article  CAS  Google Scholar 

  34. C. Gibert-Mougel, F. Couvreur, J-M. Costantini, S. Bouffard, F. Levesque, S. Hémon, E. Paumier, and C. Dufour: Phase transformation of polycrystalline zirconia induced by swift heavy ion irradiation. J. Nucl. Mater. 295, 121 (2001).

    Article  CAS  Google Scholar 

  35. S. Miro, G. Velisa, L. Thomé, P. Trocellier, Y. Serruys, A. Debelle, and F. Garrido: Monitoring by Raman spectroscopy of the damage induced in the wake of energetic ions. J. Raman Spectrosc. 45, 481 (2014).

    Article  CAS  Google Scholar 

  36. S. Miro, J-M. Costantini, J. Huguet-Garcia, and L. Thomé: Recrystallization of hexagonal silicon carbide after gold ion irradiation and thermal annealing. Philos. Mag. 94(34), 3898 (2014). DOI:10.1080/14786435.2014.968230.

    Article  CAS  Google Scholar 

  37. S. Nagata, S. Yamamoto, A. Inouye, B. Tsuchiya, K. Toh, and T. Shikama: Luminescence characteristics and defect formation in silica glasses under H and He ion irradiation. J. Nucl. Mater. 367, 1009 (2007).

    Article  CAS  Google Scholar 

  38. O. Peňa-Rodríguez, D. Jimenéz-Rey, J. Manzano-Santamaría, J. Olivares, A. Muňoz, A. Rivera, and F. Agulló-López: Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions. Appl. Phys. Express 5, 011101 (2012).

    Article  CAS  Google Scholar 

  39. P. Trocellier, S. Agarwal, and S. Miro: A review on helium mobility in inorganic materials. J. Nucl. Mater. 445, 128 (2014).

    Article  CAS  Google Scholar 

  40. S. Miro, J.M. Costantini, J. Haussy, L. Beck, S. Vaubaillon, S. Pellegrino, C. Meis, J.J. Grob, Y. Zhang, and W.J. Weber: Nuclear reaction analysis of helium migration in silicon carbide. J. Nucl. Mater. 415, 5 (2011).

    Article  CAS  Google Scholar 

  41. S. Agarwal, P. Trocellier, Y. Serruys, S. Vaubaillon, and S. Miro: Helium mobility in advanced nuclear ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 117 (2014).

    Article  CAS  Google Scholar 

  42. S. Agarwal, P. Trocellier, S. Vaubaillon, and S. Miro: Diffusion and retention of helium in titanium carbide. J. Nucl. Mater. 448, 144 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucile Beck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, L., Serruys, Y., Miro, S. et al. Ion irradiation and radiation effect characterization at the JANNUS-Saclay triple beam facility. Journal of Materials Research 30, 1183–1194 (2015). https://doi.org/10.1557/jmr.2014.414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.414

Navigation