Skip to main content

Advertisement

Log in

Coprecipitated 3D nanostructured graphene oxide–Mn3O4 hybrid as anode of lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A three-dimensional nanostructured graphene oxide–Mn3O4 hybrid was synthesized by a coprecipitation method and used as an anode material of lithium ion batteries, which reached an initial specific capacity of 1400 mA h/g. This method was developed to simplify the process of fabricating uniform composite nanomaterials for abundant applications. In this work, Mn3O4 particles were coordinately distributed on the surface of reduced graphene oxide nanosheets to avoid detrimental stacking of graphene layers by forming 3D nanostructures, as characterized by a scanning electron microscope. As demonstrated by the in situ observation of a scanning probe microscope, severe pulverization of Mn3O4 particles during charge/discharge processing was significantly abstained when graphene layers constrained swelling and shrinkage. The as-prepared graphene–Mn3O4 nanomaterials exhibited a large specific capacity of 949 mA h/g, high-rechargeable efficiency of ∼98%, and exceptional cyclic stability. After 100 constant-current charging/discharging cycles at 100 mA/g, the specific capacity remained at 792 mA h/g with a coulombic efficiency of 98.1%. Furthermore, the coprecipitation method proposed in this work provides a strategy to fabricate other nanostructured composites for different kinds of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. W. Chen, Z. Zhu, S. Li, C. Chen, and L. Yan: Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Nanoscale 4, 2124 (2012).

    Article  CAS  Google Scholar 

  2. Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang, and Y. Qian: Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale 5, 2442 (2013).

    Article  CAS  Google Scholar 

  3. P. Verma, P. Maire, and P. Novak: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332 (2010).

    Article  CAS  Google Scholar 

  4. A. Bello, O. Fashedemi, M. Fabiane, J. Lekitima, K. Ozoemena, and N. Manyala: Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor. Electrochim. Acta 114, 48 (2013).

    Article  CAS  Google Scholar 

  5. K. Shi and I. Zhitomirsky: Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS Appl. Mater. Interfaces 5, 13161 (2013).

    Article  CAS  Google Scholar 

  6. D. Bhattacharjya, M. Kim, T. Bae, and J. Yu: High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799 (2013).

    Article  CAS  Google Scholar 

  7. M. Ghasemi, W. Daud, S. Hassan, S. Oh, M. Ismail, M. Rahimnejad, and J. Jahim: Nano-structured carbon as electrode material in microbial fuel cells: A comprehensive review. J. Alloys Compd. 580, 245 (2013).

    Article  CAS  Google Scholar 

  8. H. Wang, B. Kakade, T. Tamaki, and T. Yamaguchi: Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells. J. Power Sources 260, 338 (2014).

    Article  CAS  Google Scholar 

  9. Y. Chen, C. Su, T. Zheng, and Z. Shao: Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures. J. Power Sources 220, 147 (2012).

    Article  CAS  Google Scholar 

  10. U. Yun, J. Lee, S. Lee, T. Lim, S. Park, R. Song, and D. Shin: Fabrication and operation of tubular segmented-in-series (SIS) solid oxide fuel cells (SOFC). Fuel Cells 12, 1099 (2012).

    Article  CAS  Google Scholar 

  11. M. Safari and C. Delacourt: Aging of a commercial graphite/LiFePO4 cell. J. Electrochem. Soc. 158, A1123 (2011).

    Article  CAS  Google Scholar 

  12. C. Banks and R. Compton: New electrodes for old: From carbon nanotubes to edge plane pyrolytic graphite. Analyst 131, 15 (2006).

    Article  CAS  Google Scholar 

  13. Y. Mai, S. Shi, D. Zhang, Y. Lum, C. Gu, and J. Tu: NiO-graphene hybrid as an anode material for lithium ion batteries. J. Power Sources 204, 155 (2012).

    Article  CAS  Google Scholar 

  14. Y. Mai, D. Zhang, Y. Qiao, C. Gu, X. Wang, and J. Tu: MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J. Power Sources 216, 201 (2012).

    Article  CAS  Google Scholar 

  15. H. Wang, L. Cui, Y. Yang, H. Casalongue, J. Robinson, Y. Liang, Y. Cui, and H. Dai: Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978 (2010).

    Article  CAS  Google Scholar 

  16. N. Lavoie, P. Malenfant, F. Courtel, Y. Abu-Lebdeh, and I. Davidson: High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. J. Power Sources 213, 249 (2012).

    Article  CAS  Google Scholar 

  17. K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, and L. Chen: Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl. Mater. Interfaces 4, 658 (2012).

    Article  CAS  Google Scholar 

  18. B. Li, H. Cao, J. Shao, G. Li, M. Qu, and G. Yin: Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg. Chem. 50, 1628 (2011).

    Article  CAS  Google Scholar 

  19. G. Kim, I. Nam, N. Kim, J. Park, S. Park, and J. Yi: A synthesis of graphene/Co3O4 thin films for lithium ion battery anodes by coelectrodeposition. Electrochem. Commun. 22, 93 (2012).

    Article  CAS  Google Scholar 

  20. A. Yu, H. Park, A. Davies, D. Higgins, Z. Chen, and X. Xiao: Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2, 1855 (2011).

    Article  CAS  Google Scholar 

  21. P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55, 3909 (2010).

    Article  CAS  Google Scholar 

  22. X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang: Graphene-based electrodes. Adv. Mater. 24, 5979 (2012).

    Article  CAS  Google Scholar 

  23. S. Chattopadhyay, A. Lipson, H. Karmel, J. Emery, T. Fister, P. Fenter, M. Hersam, and M. Bedzyk: In situ x-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem. Mater. 24, 3038 (2012).

    Article  CAS  Google Scholar 

  24. H. Xiang, Z. Li, K. Xie, J. Jiang, J. Chen, P. Lian, J. Wu, Y. Yu, and H. Wang: Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties, and mechanism for lithium storage. R. Soc. Chem. Adv. 2, 6792 (2012).

    CAS  Google Scholar 

  25. Z. Wu, W. Ren, L. Xu, F. Li, and H. Cheng: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463 (2011).

    Article  CAS  Google Scholar 

  26. C. Zhao, Q. Wang, Y. Yang, B. Zhang, and X. Zhang: Self-assembled manganese oxide structures through direct oxidation. Appl. Surf. Sci. 263, 397 (2012).

    Article  CAS  Google Scholar 

  27. X. Sun, Y. Xu, P. Ding, G. Chen, X. Zheng, R. Zhang, and L. Li: The composite sphere of manganese oxide and carbon nanotubes as a prospective anode material for lithium-ion batteries. J. Power Sources 255, 163 (2014).

    Article  CAS  Google Scholar 

  28. R. Lee, Y. Lin, Y. Weng, H. Pan, J. Lee, and N. Wu: Synthesis of high-performance MnOx/carbon composite as lithium-ion battery anode by a facile co-precipitation method: Effects of oxygen stoichiometry and carbon morphology. J. Power Sources 253, 373 (2014).

    Article  CAS  Google Scholar 

  29. S. Luo, H. Wu, Y. Wu, K. Jiang, J. Wang, and S. Fan: Mn3O4 nanoparticles anchored on continuous carbon nanotube network as superior anodes for lithium ion batteries. J. Power Sources 249, 464 (2014).

    Article  Google Scholar 

  30. C. Kang, I. Lahiri, R. Baskaran, W. Kim, Y. Sun, and W. Choi: 3-dimensional carbon nanotube for Li-ion battery anode. J. Power Sources 219, 364 (2012).

    Article  CAS  Google Scholar 

  31. N. Kaskhedikar and J. Maier: Lithium storage in carbon nanostructures. Adv. Mater. 21, 2664 (2009).

    Article  CAS  Google Scholar 

  32. K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang, and L. Chen: MnO powder as anode active materials for lithium ion batteries. J. Power Sources 195, 3300 (2010).

    Article  CAS  Google Scholar 

  33. M. Kawakubo, Y. Takeda, O. Yamamoto, and N. Imanishi: High capacity carbon anode for dry polymer lithium-ion batteries. J. Power Sources 226, 187 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Coprecipitated 3D nanostructured graphene oxide–Mn3O4 hybrid as anode of lithium-ion batteries. Journal of Materials Research 30, 484–492 (2015). https://doi.org/10.1557/jmr.2014.394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.394

Navigation