Skip to main content
Log in

Cooling rate dependent undercooling of Bi in a Zn matrix by differential fast scanning calorimetry

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We presented the investigation on the cooling rate dependent undercooling of the microsized and nanosized Bi droplets in the Zn matrix via differential fast scanning calorimetry at scanning rates ranging from 300 to 6000 K/s. The experimental results demonstrated that the embedded nanosized Bi droplets gave more reproducible undercooling measurements than that of microsized Bi droplets at the grain boundaries. In addition, different cooling rate dependences of undercooling of microsized and nanosized Bi droplets were found. When the cooling rate is increased from 300 to 6000 K/s, the undercooling of the embedded nanosized Bi droplets increased gradually from 125 to 130 K. However, for microsized Bi droplets at the grain boundaries, there was an obvious increase of undercooling when the cooling rate was higher than 2000 K/s. In other words, the undercooling evolution displayed a sigmoidal relationship with the increase in cooling rate, indicating the change of the heterogeneous nucleation mechanism from a surface-induced mode to a volume-induced one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. J.H. Perepezko, J.L. Sebright, P.G. Höckel, and G. Wilde: Undercooling and solidification of atomized liquid droplets. Mater. Sci. Eng., A 326(1), 144 (2002).

    Article  Google Scholar 

  2. J.H. Perepezko, P.G. Höckel, and J.S. Paik: Initial crystallization kinetics in undercooled droplets. Thermochim. Acta 388, 129 (2002).

    Article  CAS  Google Scholar 

  3. R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts: Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys. J. Mater. Res. 20(11), 2914 (2005).

    Article  CAS  Google Scholar 

  4. J. Cai, G.C. Ma, Z. Liu, H.F. Zhang, and Z.Q. Hu: Influence of rapid solidification on the microstructure of AZ91HP alloy. J. Alloys Compd. 422(1–2), 92 (2006).

    Article  CAS  Google Scholar 

  5. J.F. Xu, N. Wang, and B.B. Wei: Microstructural characteristics and electrical resistivity of rapidly solidified Co-Sn alloys. Chin. Sci. Bull. 49(21), 2242 (2004).

    Article  CAS  Google Scholar 

  6. A. Singh, H. Somekawa, and A.P. Tsai: Interfaces made by tin with icosahedral phase matrix. Scr. Mater. 59(7), 699 (2008).

    Article  CAS  Google Scholar 

  7. G.G. Long, K.W. Chapman, P.J. Chupas, L.A. Bendersky, L.E. Levine, F. Mompiou, J.K. Stalick, and J.W. Cahn: Highly ordered noncrystalline metallic phase. Phys. Rev. Lett. 111(1), 015502 (2013).

    Article  Google Scholar 

  8. P.G. Boswell and G.A. Chadwick: Heterogeneous nucleation in entrained Sn droplets. Acta Metall. 28, 209 (1980).

    Article  CAS  Google Scholar 

  9. W.T. Kim, D.L. Zhang, and B. Cantor: Nucleation of solidification in liquid droplets. Metall. Trans. A 22(10), 2487 (1991).

    Article  Google Scholar 

  10. R. Goswami and K. Chattopadhyay: Melting of Bi nanoparticles embedded in a Zn matrix. Acta Mater. 52(19), 5503 (2004).

    Article  CAS  Google Scholar 

  11. J. Mu, Z.W. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu: Size dependent melting behaviors of nanocrystalline in particles embedded in amorphous matrix. J. Appl. Phys. 111(4), 043515 (2012).

    Article  Google Scholar 

  12. H.W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, and K. Lu: Epitaxial dependence of the melting behavior of In nanoparticles embedded in Al matrices. J. Mater. Res. 12(1), 119 (1997).

    Article  CAS  Google Scholar 

  13. D.L. Zhang and B. Cantor: Heterogeneous nucleation of In particles embedded in an Al matrix. Philos. Mag. A 62(5), 557 (1990).

    Article  CAS  Google Scholar 

  14. W.T. Kim and B. Cantor: Solidification of tin droplets embedded in an aluminium matrix. J. Mater. Sci. 26(11), 2868 (1991).

    Article  CAS  Google Scholar 

  15. P.L. Sun, S.P. Wu, S.C. Chang, T.S. Chin, and R.T. Huang: Microstructure and melting behavior of tin nanoparticles embedded in alumina matrix processed by ball milling. Mater. Sci. Eng., A 600, 59 (2014).

    Article  CAS  Google Scholar 

  16. B.A. Mueller and J.H. Perepezko: The undercooling of aluminum. Metall. Trans. A 18(6), 1143 (1987).

    Article  Google Scholar 

  17. W.B. Guan, Y.L. Gao, Q.J. Zhai, and K.D. Xu: Undercooling of droplet solidification for molten pure aluminum. Mater. Lett. 59(13), 1701 (2005).

    Article  CAS  Google Scholar 

  18. W.B. Guan, Y.L. Gao, Q.J. Zhai, and K.D. Xu: DSC study on the undercooling of droplet solidification of metal melt. Chin. Sci. Bull. 50(9), 929 (2005).

    Article  CAS  Google Scholar 

  19. H.W. Sheng, K. Lu, and E. Ma: Melting and freezing behavior of embedded nanoparticles in ball-milled Al–10wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater. 46(14), 5195 (1998).

    Article  CAS  Google Scholar 

  20. T.F.J. Pijpers, V.B.F. Mathot, B. Goderis, R.L. Scherrenberg, and E.W. van der Vegte: High-speed calorimetry for the study of the kinetics of (De)vitrification, crystallization, and melting of macromolecules. Macromolecules 35(9), 3601 (2002).

    Article  CAS  Google Scholar 

  21. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, and L.H. Allen: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77(1), 99 (1996).

    Article  CAS  Google Scholar 

  22. M. Zhang, M.Y. Efremov, E.A. Olson, Z.S. Zhang, and L.H. Allen: Real-time heat capacity measurement during thin-film deposition by scanning nanocalorimetry. Appl. Phys. Lett. 81(20), 3801 (2002).

    Article  CAS  Google Scholar 

  23. P. Swaminathan, D.A. LaVan, and T.P. Weihs: Dynamics of solidification in Al thin films measured using a nanocalorimeter. J. Appl. Phys. 110(11), 113519 (2011).

    Article  Google Scholar 

  24. E. Zhuravlev and C. Schick: Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta 505(1–2), 1 (2010).

    Article  CAS  Google Scholar 

  25. B. Yang, A.S. Abyzov, E. Zhuravlev, Y.L. Gao, J.W.P. Schmelzer, and C. Schick: Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry. J. Chem. Phys. 138(5), 054501 (2013).

    Article  Google Scholar 

  26. B.G. Zhao, L.F. Li, Q.J. Zhai, and Y.L. Gao: Undercooling evolution of pure Sn droplets in various atmospheres based on fast scanning calorimetry. Chin. Sci. Bull. 59(20), 2455 (2014).

    Article  CAS  Google Scholar 

  27. B.G. Zhao, J. Zhao, W.P. Zhang, B. Yang, Q.J. Zhai, C. Schick, and Y.L. Gao: Fast scanning calorimetric measurements and microstructure observation of rapid solidified Sn3.5Ag solder droplets. Thermochim. Acta 565, 194 (2013).

    Article  CAS  Google Scholar 

  28. Y.L. Gao, E. Zhuravlev, C.D. Zou, B. Yang, Q.J. Zhai, and C. Schick: Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochim. Acta 482(1–2), 1 (2009).

    Article  CAS  Google Scholar 

  29. B.G. Zhao, L.F. Li, Q.J. Zhai, and Y.L. Gao: Formation of amorphous structure in Sn3.5Ag droplet by in situ fast scanning calorimetry controllable quenching. Appl. Phys. Lett. 103(13), 131913 (2013).

    Article  Google Scholar 

  30. B.G. Zhao, L.F. Li, F.G. Lu, Q.J. Zhai, B. Yang, C. Schick, and Y.L. Gao: Phase transitions and nucleation mechanisms in metals studied by nanocalorimetry: A review. Thermochim. Acta (2014). DOI: https://doi.org/10.1016/j.tca.2014.09.005.

  31. C.D. Cao, B. Wei, and D.M. Herlach: Disperse structures of undercooled Co-40 wt% Cu droplets processed in drop tube. J. Mater. Sci. Lett. 21(4), 341 (2002).

    Article  CAS  Google Scholar 

  32. C.D. Cao, D.M. Herlach, M. Kolbe, G.P. Görler, and B. Wei: Rapid solidification of Cu84Co16 alloy undercooled into the metastable miscibility gap under different conditions. Scr. Mater. 48(1), 5 (2003).

    Article  CAS  Google Scholar 

  33. P.L. Schaffer, R.H. Mathiesen, and L. Arnberg: L2 droplet interaction with α-Al during solidification of hypermonotectic Al–8 wt% Bi alloys. Acta Mater. 57(10), 2887 (2009).

    Article  CAS  Google Scholar 

  34. R. Goswami and K. Chattopadhyay: Microstructural evolution and transformation pathways in the near monotectic Zn rich Zn-Bi alloys during rapid solidification. Acta Metall. Mater. 42(2), 383 (1994).

    Article  CAS  Google Scholar 

  35. B. Yang, Y.L. Gao, C.D. Zou, Q.J. Zhai, A.S. Abyzov, E. Zhuravlev, J.W.P. Schmelzer, and C. Schick: Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry. Appl. Phys. A 104(1), 189 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2014042); National Natural Science Foundation of China (51171105, 50971086); and the 085 project in Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulai Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhao, B., Yang, B. et al. Cooling rate dependent undercooling of Bi in a Zn matrix by differential fast scanning calorimetry. Journal of Materials Research 30, 242–247 (2015). https://doi.org/10.1557/jmr.2014.373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.373

Navigation