Skip to main content

Advertisement

Log in

Investigating the effects of surface-initiated polymerization of ε-caprolactone to bioactive glass particles on the mechanical properties of settable polymer/ceramic composites

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Injectable bone grafts with strength exceeding that of trabecular bone could improve the clinical management of a number of orthopedic conditions. Ceramic/polymer composites have been investigated as weight-bearing bone grafts, but they are typically weaker than trabecular bone due to poor interfacial bonding. We hypothesized that entrapment of surface-initiated poly(ε-caprolactone) (PCL) chains on 45S5 bioactive glass (BG) particles within an in situ-formed polymer network would enhance the mechanical properties of reactive BG/polymer composites. When the surface-initiated PCL molecular weight exceeded the molecular weight between crosslinks of the network, the compressive strength of the composites increased 6- to 10-fold. The torsional strength of the composites exceeded that of human trabecular bone by a factor of two. When injected into femoral condyle defects in rats, the composites supported new bone formation at 8 weeks. The initial bone-like strength of BG/polymer composites and their ability to remodel in vivo highlight their potential for development as injectable grafts for repair of weight-bearing bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. T.A. Russell and R.K. Leighton: Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. J. Bone Jt. Surg., Am. Vol. 90A(10), 2057 (2008).

    Article  Google Scholar 

  2. D. Simpson and J.F. Keating: Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury 35(9), 913 (2004).

    Article  CAS  Google Scholar 

  3. L. Amendola, A. Gasbarrini, M. Fosco, C.E. Simoes, S. Terzi, F. Delure, and S. Boriani: Fenestrated pedicle screws for cement-augmented purchase in patients with bone softening: A review of 21 cases. J. Orthop. Traumatol. 12(4), 193 (2011).

    Article  Google Scholar 

  4. S. Larsson, V.A. Stadelmann, J. Arnoldi, M. Behrens, B. Hess, P. Procter, M. Murphy, and D.P. Pioletti: Injectable calcium phosphate cement for augmentation around cancellous bone screws. In vivo biomechanical studies. J. Biomech. 45(7), 1156 (2012).

    Article  CAS  Google Scholar 

  5. S. Larsson and P. Procter: Optimising implant anchorage (augmentation) during fixation of osteoporotic fractures: Is there a role for bone-graft substitutes?Injury 42, S72 (2011).

    Article  Google Scholar 

  6. J.J. Verlaan, F.C. Oner, and W.J.A. Dhert: Anterior spinal column augmentation with injectable bone cements. Biomaterials 27(3), 290 (2006).

    Article  CAS  Google Scholar 

  7. R.Z. Legeros, A. Chohayeb, and A. Schulman: Apatitic calcium phosphates possible dental restorative materials. J. Dent. Res. 61 (SPEC. ISSUE), 343 (1982).

    Google Scholar 

  8. H. Chim and A.K. Gosain: Biomaterials in craniofacial surgery experimental studies and clinical application. J. Craniofac. Surg. 20(1), 29 (2009).

    Article  Google Scholar 

  9. J.A. Hall, M.J. Beuerlein, and M.D. McKee: Open reduction and internal fixation compared with circular fixator application for bicondylar tibial plateau fractures. Surgical technique. J. Bone Jt. Surg., Am. Vol. 91(Suppl 2 Pt 1), 74 (2009).

    Article  Google Scholar 

  10. A.J. Wagoner Johnson and B.A. Herschler: A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7(1), 16 (2011).

    Article  CAS  Google Scholar 

  11. M. Bohner: Design of ceramic-based cements and putties for bone graft substitution. Eur. Cell Mater. 20, 1 (2010).

    Article  CAS  Google Scholar 

  12. J.E. Dumas, E.M. Prieto, T. Guda, K.J. Zienkiewicz, J. Garza, J. Bible, G.E. Holt, and S.A. Guelcher: Remodeling of settable allograft bone/polymer composites with initial bone-like mechanical properties in rabbit femora. Tissue Eng., Part A 20(1–2), 115–129 (2014).

    Article  CAS  Google Scholar 

  13. J.R. Jones: Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9(1), 4457 (2013).

    Article  CAS  Google Scholar 

  14. A.R. Boccaccini and J.J. Blaker: Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices 2(3), 303 (2005).

    Article  CAS  Google Scholar 

  15. L.L. Hench and J. Wilson: Bioceramics. MRS Bull. 16(9), 62 (1991).

    Article  CAS  Google Scholar 

  16. P. Saravanapavan, J.R. Jones, R.S. Pryce, and L.L. Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res., Part A 66A(1), 110 (2003).

    Article  CAS  Google Scholar 

  17. L.L. Hench: The story of bioglass (R). J. Mater. Sci.: Mater. Med. 17(11), 967 (2006).

    CAS  Google Scholar 

  18. A. Hoppe, N.S. Gueldal, and A.R. Boccaccini: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11), 2757 (2011).

    Article  CAS  Google Scholar 

  19. K.E. Tanner: Bioactive composites for bone tissue engineering. Proc. Inst. Mech. Eng., Part H 224(H12), 1359 (2010).

    Article  CAS  Google Scholar 

  20. O. Bretcanu, S. Misra, I. Roy, C. Renghini, F. Fiori, A.R. Boccaccini, and V. Salih: In vitro biocompatibility of 45S5 2bioglass (R)-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). J. Tissue Eng. Regener. Med. 3(2), 139 (2009).

    Article  CAS  Google Scholar 

  21. M. Bil, J. Ryszkowska, J.A. Roether, O. Bretcanu, and A.R. Boccaccini: Bioactivity of polyurethane-based scaffolds coated with bioglass(R). Biomed. Mater. 2(2), 93 (2007).

    Article  CAS  Google Scholar 

  22. J.L. Ryszkowska, M. Auguscik, A. Sheikh, and A.R. Boccaccini: Biodegradable polyurethane composite scaffolds containing bioglass (R) for bone tissue engineering. Compos. Sci. Technol. 70(13), 1894 (2010).

    Article  CAS  Google Scholar 

  23. C. Chan, I. Thompson, P. Robinson, J. Wilson, and L. Hench: Evaluation of bioglass/dextran composite as a bone graft substitute. Int. J. Oral Maxillofac. Surg. 31(1), 73 (2002).

    Article  CAS  Google Scholar 

  24. R.E. Neuendorf, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomater. 4, 1288 (2008).

    Article  CAS  Google Scholar 

  25. G. Jiang, M.E. Evans, I.A. Jones, C.D. Rudd, C.A. Scotchford, and G.S. Walker: Preparation of poly(epsilon-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant. Biomaterials 26(15), 2281 (2005).

    Article  CAS  Google Scholar 

  26. G. Jiang, G.S. Walker, I.A. Jones, and C.D. Rudd: XPS identification of surface-initiated polymerisation during monomer transfer moulding of poly(epsilon-caprolactone)/bioglass (R) fibre composite. Appl. Surf. Sci. 252(5), 1854 (2005).

    Article  CAS  Google Scholar 

  27. E. Verne, C. Vitale-Brovarone, E. Bui, C.L. Bianchi, and A.R. Boccaccini: Surface functionalization of bioactive glasses. J. Biomed. Mater. Res., Part A 90A(4), 981 (2009).

    Article  CAS  Google Scholar 

  28. C. Kunze, T. Freier, E. Helwig, B. Sandner, D. Reif, A. Wutzler, and H.J. Radusch: Surface modification of tricalcium phosphate for improvement of the interfacial compatibility with biodegradable polymers. Biomaterials 24(6), 967 (2003).

    Article  CAS  Google Scholar 

  29. M. Barsbay, G. Gueven, M.H. Stenzel, T.P. Davis, C. Barner-Kowollik, and L. Barner: Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20), 7140 (2007).

    Article  CAS  Google Scholar 

  30. S.A. Guelcher, V. Patel, K.M. Gallagher, S. Connolly, J.E. Didier, J.S. Doctor, and J.O. Hollinger: Synthesis and in vitro biocompatibility of injectable polyurethane foam scaffolds. Tissue Eng. 12(5), 1247 (2006).

    Article  CAS  Google Scholar 

  31. N.S. Ruppender, A.R. Merkel, T.J. Martin, G.R. Mundy, J.A. Sterling, and S.A. Guelcher: Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One 5(11), e15451 (2010).

    Article  CAS  Google Scholar 

  32. K.B. Garnier, R. Dumas, C. Rumelhart, and M.E. Arlot: Mechanical characterization in shear of human femoral cancellous bone: Torsion and shear tests. Med. Eng. Phys. 21(9), 641 (1999).

    Article  Google Scholar 

  33. C.M. Ford and T.M. Keaveny: The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J. Biomech. 29(10), 1309 (1996).

    Article  CAS  Google Scholar 

  34. A.E. Hafeman, K.J. Zienkiewicz, A.L. Zachman, H-J. Sung, L.B. Nanney, J.M. Davidson, and S.A. Guelcher: Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds. Biomaterials 32(2), 419 (2011).

    Article  CAS  Google Scholar 

  35. Z. Wang, B. Lu, L. Chen, and J. Chang: Evaluation of an osteostimulative putty in the sheep spine. J. Mater. Sci.: Mater. Med. 22(1), 185 (2011).

    Google Scholar 

  36. R.A. Khan, A.J. Parsons, I.A. Jones, G.S. Walker, and C.D. Rudd: Effectiveness of 3-aminopropyl-triethoxy-silane as a coupling agent for phosphate glass fiber-reinforced poly(caprolactone)-based composites for fracture fixation devices. J. Thermoplast. Compos. Mater. 24, 517 (2011).

    Article  CAS  Google Scholar 

  37. G. Oertel: Polyurethane Handbook, 2nd ed. (Hanser Gardner Publications, Munich, Germany, 1994).

    Google Scholar 

  38. H.R. Brown and T.P. Russell: Entanglements at polymer surfaces and interfaces. Macromolecules 29(2), 798 (1996).

    Article  CAS  Google Scholar 

  39. A. Gurarslan, J. Shen, and A.E. Tonelli: Behavior of poly(epsilon-caprolactone)s (PCLs) coalesced from their stoichiometric urea inclusion compounds and their use as nucleants for crystallizing PCL melts: Dependence on PCL molecular weights. Macromolecules 45(6), 2835 (2012).

    Article  CAS  Google Scholar 

  40. M.R. Allen, H.A. Hogan, W.A. Hobbs, A.S. Koivuniemi, M.C. Koivuniemi, and D.B. Burr: Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology 148(8), 3908 (2007).

    Article  CAS  Google Scholar 

  41. M. Libicher, J. Hillmeier, U. Liegibel, U. Sommer, W. Pyerin, M. Vetter, H.P. Meinzer, I. Grafe, P. Meeder, G. Noldge, P. Nawroth, and C. Kasperk: Osseous integration of calcium phosphate in osteoporotic vertebral fractures after kyphoplasty: Initial results from a clinical and experimental pilot study. Osteoporosis Int. 17(8), 1208 (2006).

    Article  CAS  Google Scholar 

  42. G. Maestretti, C. Cremer, P. Otten, and R.P. Jakob: Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur. Spine J. 16(5), 601 (2007).

    Article  Google Scholar 

  43. J. Dumas, E. Prieto, K. Zienkiewicz, T. Guda, J. Wenke, J. Bible, G. Holt, and S. Guelcher: Remodeling of settable allograft bone/polymer composites with initial bone-like mechanical properties in rabbit femora. Tissue Eng., Part A 20(1–2), 115 (2014).

    Article  CAS  Google Scholar 

  44. J.M. Page, E.M. Prieto, J.E. Dumas, K.J. Zienkiewicz, J.C. Wenke, P. Brown-Baer, and S.A. Guelcher: Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites. Acta Biomater. 8(12), 4405 (2012).

    Article  CAS  Google Scholar 

  45. K. Gorna and S. Gogolewski: Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J. Biomed. Mater. Res. 67A, 813 (2003).

    Article  CAS  Google Scholar 

  46. S. Gogolewski and K. Gorna: Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J. Biomed. Mater. Res. 80A, 94 (2007).

    Article  CAS  Google Scholar 

  47. T.J. Lehtonen, J.U. Tuominen, and E. Hiekkanen: Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism. Acta Biomater. 9(1), 4868 (2013).

    Article  CAS  Google Scholar 

  48. S. Midha, W. van den Bergh, T.B. Kim, P.D. Lee, J.R. Jones, and C.A. Mitchell: Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Adv. Healthc. Mater. 2(3), 490 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under (Grant No. 0847711) (CAREER award to S.A. Guelcher) and the National Institutes of Health through the National Institute of Arthritis and Musculoskeletal and Skin Diseases under Award Number AR064304 (S.A. Guelcher and J. C. Wenke). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A.J. Harmata acknowledges financial support from an Oak Ridge Institute for Science and Education Fellowship funded by the U.S. Army Medical Research and Materiel Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Guelcher.

Additional information

This paper has been selected as an Invited Feature Paper.

Disclosure

S.A. Guelcher is a consultant for Medtronic, Inc. Medtronic supplied some of the raw materials used to fabricate the composites and has supported research in Guelcher’s laboratory at Vanderbilt University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmata, A.J., Ward, C.L., Zienkiewicz, K.J. et al. Investigating the effects of surface-initiated polymerization of ε-caprolactone to bioactive glass particles on the mechanical properties of settable polymer/ceramic composites. Journal of Materials Research 29, 2398–2407 (2014). https://doi.org/10.1557/jmr.2014.254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.254

Navigation