Skip to main content
Log in

New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Doping of a heteroatom such as nitrogen in carbon nanomaterials provides a means to tailor their electronic properties and chemical reactivities. In this article, we present simple methods to synthesize carbon quantum dots (CQDs) with high nitrogen doping content (18–22%), involving the reaction of glucose in the presence of urea under hydrothermal conditions or by microwave irradiation. The N-doped carbon quantum dots (N-CQDs) show high aqueous solubility and tunable photoluminescence (PL). Interaction of N-CQDs with exfoliated graphene or dimethylaniline quenches PL. Interaction of N-doped as well as undoped C-dots with electron-donating tetrathiafulvalene and electron-withdrawing tetracyanoethylene has been examined. The intense blue PL of CQDs has been exploited to produce white light by mixing the CQDs with yellow light emitting ZnO nanoparticles or graphene oxide. The N-doped CQDs exhibit superior photocatalytic activity compared to pristine CQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer: Carbon nanotubes-the route toward applications. Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  2. O.C. Compton and S.T. Nguyen: Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6, 711 (2010).

    Article  CAS  Google Scholar 

  3. H. Li, Z. Kang, Y. Liu, and S.T. Lee: Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 22, 24230 (2012).

    Article  CAS  Google Scholar 

  4. S.N. Baker and G.A. Baker: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 49, 6726 (2010).

    Article  CAS  Google Scholar 

  5. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, and S. Weiss: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005).

    Article  CAS  Google Scholar 

  6. D.I. Meier, J.M. Hwang, and R.B. Campbell: The effect of doping density and injection level on minority-carrier lifetime as applied to bifacial dendritic web silicon solar cells. IEEE Trans. Electron Devices 35, 70 (1988).

    Article  Google Scholar 

  7. K.P. Gong, F. Du, Z.H. Xia, M. Durstock, and L.M. Dai: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009).

    Article  CAS  Google Scholar 

  8. H.T. Liu, Y.Q. Liu, and D.B. Zhu: Chemical doping of graphene. J. Mater. Chem. 21, 3335 (2011).

    Article  CAS  Google Scholar 

  9. L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao: Boron- and nitrogen- doped carbon nanotubes and graphene. Inorg. Chim. Acta 363, 4163–4174 (2010).

    Article  CAS  Google Scholar 

  10. D. Yu, Q. Zhang, and L. Dai: Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132, 15127 (2010).

    Article  CAS  Google Scholar 

  11. S. Wang, D. Yu, and L. Dai: Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133, 5182–5185 (2011).

    Article  CAS  Google Scholar 

  12. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai: N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768 (2009).

    Article  CAS  Google Scholar 

  13. L.T. Qu, Y. Liu, J.B. Baek, and L.M. Dai: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cell. ACS Nano 4, 1321 (2010).

    Article  CAS  Google Scholar 

  14. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472 (2011).

    Article  CAS  Google Scholar 

  15. K. Gopalakrishnan, K. Moses, A. Govindaraj, and C.N.R. Rao: Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides. Solid State Commun.http://dx.doi.org/10.1016/j.ssc.2013.02.005.

  16. Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, and Y.H. Lin: Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790 (2010).

    Article  CAS  Google Scholar 

  17. Y.Q. Zhang, D.K. Ma, Y. Zhuang, X. Zhang, W. Chen, L.L. Hong, Q.X. Yan, K. Yu, and S-M. Huang: One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J. Mater. Chem. 22, 16714 (2012).

    Article  CAS  Google Scholar 

  18. C. Hu, Y. Liu, Y. Yang, J. Cui, Z. Huang, Y. Wang, L. Yang, H. Wang, Y. Xiao, and J. Rong: One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J. Mater. Chem. B 1, 39 (2013).

    Article  CAS  Google Scholar 

  19. Z. Ma, H. Ming, H. Huang, Y. Liu, and Z. Kang: One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36, 861 (2012).

    Article  CAS  Google Scholar 

  20. X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, and W. Liu: Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 48, 7955 (2012).

    Article  CAS  Google Scholar 

  21. Y.X. Ming, W.Y. Liu, X.Z. Feng, X.B. Yin, X.W. He, and Y.K. Zhang: Nitrogen-doped carbon dots: A facile and general preparation method, photoluminescence investigation, and imaging applications. Chem. Eur. J. 19, 2276 (2013).

    Article  CAS  Google Scholar 

  22. Q. Li, S. Zhang, L. Dai, and L.S. Li: Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 18932 (2012).

    Article  CAS  Google Scholar 

  23. K. Sardar and C.N.R. Rao: New solvothermal routes for GaN nanocrystals. Adv. Mater. 16, 425 (2004).

    Article  CAS  Google Scholar 

  24. K. Biswas, K. Sardar, and C.N.R. Rao: Ferromagnetism in Mn-doped GaN nanocrystals prepared solvothermally at low temperatures. Appl. Phys. Lett. 89, 132503 (2006).

    Article  CAS  Google Scholar 

  25. A. Gomathi and C.N.R. Rao: Nanostructures of the binary nitrides, BN, TiN, and NbN, prepared by the urea-route. Mater. Res. Bull. 41, 941 (2006).

    Article  CAS  Google Scholar 

  26. Z. Lin, G. Waller, Y. Liu, M. Liu, and C.P. Wong: Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2, 884 (2012).

    Article  CAS  Google Scholar 

  27. K. Gopalakrishnan, A. Govindaraj, and C.N.R. Rao: Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J. Mater. Chem. A 1, 7563 (2013).

    Article  CAS  Google Scholar 

  28. X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu: Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem. 21, 2445 (2011).

    Article  CAS  Google Scholar 

  29. C. Pacholski, A. Kornowski, and H. Weller: Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188 (2002).

    Article  CAS  Google Scholar 

  30. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu: Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv. 2, 4498 (2012).

    Article  CAS  Google Scholar 

  31. R.I. Walton: Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230 (2002).

    Article  CAS  Google Scholar 

  32. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, and S.P. Lau: Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102 (2012).

    Article  CAS  Google Scholar 

  33. B. De and N. Karak: A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3, 8286 (2013).

    Article  CAS  Google Scholar 

  34. S.H. Yu, X.J. Cui, L.L. Li, K. Li, B. Yu, M. Antonietti, and H.C. Colfen: From strach to metal/carbon hybrid nanostructure: Hydrothermal metal-catalyzed carbonization. Adv. Mater. 16, 1636 (2004).

    Article  CAS  Google Scholar 

  35. S.Y. Xie, R.B. Huang, and L.S. Zheng: Separation and identification of perchlorinated polycyclic aromatic hydrocarbons by high-performance liquid chromatography and ultraviolet absorption spectroscopy. J. Chromatogr. A 864, 173 (1999).

    Article  CAS  Google Scholar 

  36. L. Cao, M.J. Meziani, S. Sahu, and Y.P. Sun: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).

    Article  CAS  Google Scholar 

  37. Y. Li, Y. Zhao, H.H. Cheng, Y. Hu, G.Q. Shi, L.M. Dai, and L.T. Qu: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15 (2012).

    Article  CAS  Google Scholar 

  38. Z.A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu, and Q. Huo: Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 46, 8812 (2010).

    Article  CAS  Google Scholar 

  39. H. Peng and J.T. Sejdic: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21, 5563 (2009).

    Article  CAS  Google Scholar 

  40. H. Liu, T. Ye, and C. Mao: Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473 (2007).

    Article  CAS  Google Scholar 

  41. Z. Chen, S. Berciaud, C. Nuckolls, T.F. Heinz, and L.E. Brus: Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4, 2964 (2010).

    Article  CAS  Google Scholar 

  42. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen: Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 20, 3924 (2008).

    Article  CAS  Google Scholar 

  43. H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju: Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82, 5511 (2010).

    Article  CAS  Google Scholar 

  44. H.S.S.R. Matte, K.S. Subrahmanyam, K.V. Rao, S.J. George, and C.N.R. Rao: Quenching of fluorescence of aromatic molecules by graphene due to electron transfer. Chem. Phys. Lett. 506, 260 (2011).

    Article  CAS  Google Scholar 

  45. W. Wei, C. Xu, J. Ren, B. Xu, and X. Qu: Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem. Commun. 48, 1284 (2012).

    Article  CAS  Google Scholar 

  46. A. Airinei, R.I. Tigoianu, E. Rusu, and D. Dorohoi: Fluorescence quenching of anthracene by nitroaromatic compounds. Digest J. Nanomater. Biostruct. 6, 1265 (2011).

    Google Scholar 

  47. J.R. Lakowicz: Principles of Fluorescence Spectroscopy (Springer, New York, NY, 2009), p. 281.

    Google Scholar 

  48. X. Wang, L. Cao, F. Lu, M.J. Meziani, L. Heting, Q. Gang, Z. Bing, B.A. Harruff, F. Kermarrec, and Y.P. Sun: Photoinduced electron transfers with carbon dots. Chem. Commun. 3774, (2009).

  49. R. Voggu, B. Das, C.S. Rout, and C.N.R. Rao: Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J. Phys. Condens. Matter 20, 472204 (2008).

    Article  CAS  Google Scholar 

  50. C.N.R. Rao, and R. Voggu: Charge-transfer with graphene and nanotubes. Mater. Today 13, 34 (2010).

    Article  CAS  Google Scholar 

  51. P. Yu, X. Wen, Y.R. Toh, and J. Tang: Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C 116, 25552 (2012).

    Article  CAS  Google Scholar 

  52. S. Dey, B. Das, R. Voggu, A. Nag, D.D. Sarma, and C.N.R. Rao: Interaction of CdSe and ZnO nanocrystals with electron-donor and -acceptor molecules. Chem. Phys. Lett. 556, 200 (2013).

    Article  CAS  Google Scholar 

  53. P. Kumar, L.S. Panchakarla, S.V. Bhat, U. Maitra, K.S. Subrahmanyam, and C.N.R. Rao: Photoluminescence, white light emitting properties and related aspects of ZnO nanoparticles admixed with graphene and GaN. Nanotechnology 21, 385701 (2012).

    Article  CAS  Google Scholar 

  54. K.S. Subrahmanyam, P. Kumar, A. Nag, and C.N.R. Rao: Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun. 150, 1774 (2010).

    Article  CAS  Google Scholar 

  55. D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, and W.K. Choi: Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465 (2012).

    Article  CAS  Google Scholar 

  56. W. Kwon, S. Do, J. Lee, S. Hwang, J.K. Kim, and S.W. Rhee: Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices. Chem. Mater. 25, 1893 (2013).

    Article  CAS  Google Scholar 

  57. http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cie.html#c2.

  58. W.T. Zheng, S.S. Yu, C. Wang, and Q. Jiang: Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene. ACS Nano 4, 7619 (2010).

    Article  CAS  Google Scholar 

  59. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.M. Herrmann: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 31, 145 (2001).

    Article  CAS  Google Scholar 

  60. R.I. Jafri, N. Rajalakshmi, and S. Ramaprabhu: Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 20, 7114 (2010).

    Article  CAS  Google Scholar 

  61. V.F. Lapko, I.P. Gerasimyuk, V.S. Kuts, and Y.A. Tarasenko: The activation characteristics of the decomposition of H2O2 on palladium-carbon catalyst. Russ. J. Phys. Chem. A 84, 934 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

S. Dey thanks CSIR for a fellowship. K. Biswas greatly appreciates the support of the DST Ramanujan fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. R. Rao.

Additional information

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, S., Chithaiah, P., Belawadi, S. et al. New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content. Journal of Materials Research 29, 383–391 (2014). https://doi.org/10.1557/jmr.2013.295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.295

Navigation