Skip to main content
Log in

Atomic and electronic properties of quasi-one-dimensional MoS2 nanowires

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, electronic, and magnetic properties of quasi-one-dimensional MoS2nanowires (NWs), passivated by extra sulfur, have been determined using ab initio density functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images and theoretical literature. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation, the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo edge, the NWs do not experience a Peierls-like metal–insulator transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.E. Donath: History of catalysis in coal liquefaction catalysis. Sci. Technol. 3, 1 (1982).

    CAS  Google Scholar 

  2. C. Song: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today. 86(1–4), 211 (2000).

    Google Scholar 

  3. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat: Ab initio study of the H2–H2S/MoS2 gas–solid interface: The nature of the catalytically active sites. J. Catal. 189(1), 129 (2000).

    CAS  Google Scholar 

  4. P. Raybaud, J. Hafner, G. Kresse, and H. Toulhoat: Structural and electronic properties of the MoS2(1010) edge-surface. Surf. Sci. 407(1–3), 237 (1998).

    CAS  Google Scholar 

  5. S. Helveg, J.V. Lauritsen, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, B.S. Clausen, H. Topsøe, and F. Besenbacher: Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84(5), 951 (2000).

    CAS  Google Scholar 

  6. M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nøtrskov, S. Helveg, and F. Besenbacher: One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87(19), 196803/1 (2001).

    CAS  Google Scholar 

  7. M. Bollinger, K. Jacobsen, and J. Nørskov: Atomic and electronic structure of MoS2 nanoparticles. Phys. Rev. B 67(8), 085410 (2003).

    Google Scholar 

  8. J.V. Lauritsen, M.V. Bollinger, E. Lægsgaard, K.W. Jacobsen, J.K. Nørskov, B.S. Clausen, H. Topsøe, and F. Besenbacher: Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 221(2), 510 (2004).

    CAS  Google Scholar 

  9. J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B.S. Clausen, E. Laegsgaard, and F. Besenbacher: Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2(1), 53 (2007).

    CAS  Google Scholar 

  10. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834), 100 (2007).

    CAS  Google Scholar 

  11. C. Zuriaga-Monroy, J-M. Martínez-Magadán, E. Ramos, and R. Gómez-Balderas: A DFT study of the electronic structure of cobalt and nickel mono-substituted MoS2 triangular nanosized clusters. J. Mol. Catal. A: Chem. 313(1–2), 49 (2009).

    CAS  Google Scholar 

  12. A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, E. Wachtel, H. Cohen, S. Reich, and R. Tenne: Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124(17), 4747 (2002).

    CAS  Google Scholar 

  13. T. Li and G. Galli: Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111(44), 16192 (2007).

    CAS  Google Scholar 

  14. G. Seifert: Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85(1), 146 (2000).

    CAS  Google Scholar 

  15. M. Nath, A. Govindaraj, and C.N.R Rao: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13(4), 283 (2001).

    CAS  Google Scholar 

  16. A. Gloskovskii, S.A. Nepijko, M. Cinchetti, G. Schonhense, G.H. Fecher, H.C. Kandpal, C. Felser, H.A. Therese, N. Zink, W. Tremel, and A. Oelsner: Time-of-flight photoelectron spectromicroscopy of single MoS2 nanotubes. J. Appl. Phys. 100(8), 084330 (2006).

    Google Scholar 

  17. M. Verstraete and J.C. Charlier: Ab initio study of MoS2 nanotube bundles. Phys. Rev. B 68(4), 045423 (2003).

    Google Scholar 

  18. J. Kibsgaard, A. Tuxen, M. Levisen, E. Laegsgaard, S. Gemming, G. Seifert, J.V. Lauritsen, and F. Besenbacher: Atomic-scale structure of Mo6S6 nanowires. Nano Lett. 8(11), 3928 (2008).

    CAS  Google Scholar 

  19. D.H. Galvan, F.L. Deepak, R. Esparza, A. Posada-Amarillas, R. Núñez-González, X. López-Lozano, and M. José-Yacamán: Experimental and theoretical properties of S–Mo–Co–S clusters. Appl. Catal., A 397(1–2), 46 (2011).

    CAS  Google Scholar 

  20. F.L. Deepak, R. Esparza, B. Borges, X. López-Lozano, and M. Jose-Yacaman: Rippled and helical MoS2 nanowire catalysts: An aberration corrected STEM study. Catal. Lett. 141(4), 518 (2011).

    CAS  Google Scholar 

  21. F.L. Deepak, R. Esparza, B. Borges, X. Lopez-Lozano, and M. Jose-Yacaman: Direct imaging and identification of individual dopant atoms in MoS2 and WS2 catalysts by aberration corrected scanning transmission electron microscopy. ACS Catal. 1(5), 537 (2011).

    CAS  Google Scholar 

  22. I. Popov, S. Gemming, S. Okano, N. Ranjan, and G. Seifert: Electromechanical switch based on Mo6S6 nanowires. Nano Lett. 8(12), 4093 (2008).

    CAS  Google Scholar 

  23. Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, and R.M. Penner: Polycrystalline molybdenum disulfide (2H−MoS2) nano- and microribbons by electrochemical/chemical synthesis. Nano Lett. 4(2), 277 (2004).

    CAS  Google Scholar 

  24. Y. Li, Z. Zhou, S. Zhang, and Z. Chen: MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130(49), 16739 (2008).

    CAS  Google Scholar 

  25. A.R. Botello-Mendez, F. Lopez-Urias, M. Terrones, and H. Terrones: Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology 20(32), 325703 (2009).

    CAS  Google Scholar 

  26. R. Shidpour and M. Manteghian: The creation of the magnetic and metallic characteristics in low-width MoS2 nanoribbon (1D MoS2): A DFT study. Chem. Phys. 360(1–3), 97 (2009).

    CAS  Google Scholar 

  27. R. Shidpour and M. Manteghian: A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2(8), 1429 (2010).

    CAS  Google Scholar 

  28. Z. Wang, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.K. Joung, T. Okazaki, Z. Gu, J. Zhou, Z. Gao, G. Li, S. Sanvito, E. Wang, and S. Iijima: Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J. Am. Chem. Soc. 132(39), 13840 (2010).

    CAS  Google Scholar 

  29. C. Ataca, H. Sahin, E. Akturk and S. Ciraci: Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 115(10), 3934 (2011).

    CAS  Google Scholar 

  30. E. Erdogan, I.H. Popov, A.N. Enyashin, and G. Seifert: Transport properties of MoS2 nanoribbons: Edge priority. Eur. Phys. J. B 85(1), 33 (2012).

    Google Scholar 

  31. G.A. Camacho-Bragado, J.L. Elechiguerra, A. Olivas, S. Fuentes, D. Galvan, and M.J. Yacaman: Structure and catalytic properties of nanostructured molybdenum sulfides. J. Catal. 234(1), 182 (2005).

    CAS  Google Scholar 

  32. G.A. Camacho-Bragado and M. Jose-Yacaman: Self-assembly of molybdite nanoribbons. Appl. Phys. A 82(1), 19 (2006).

    CAS  Google Scholar 

  33. N. Bertram, J. Cordes, Y.D. Kim, G. Gantefor, S. Gemming, and G. Seifert: Nanoplatelets made from MoS2 and WS2. Chem. Phys. Lett. 418(1–3), 36 (2006).

    CAS  Google Scholar 

  34. N. Elizondo-Villarreal, R. Velázquez-Castillo, D.H. Galván, A. Camacho, and M. José Yacamán: Structure and catalytic properties of molybdenum sulfide nanoplatelets. Appl. Catal., A 328(1), 88 (2007).

    CAS  Google Scholar 

  35. G.A. Camacho-Bragado, J.L. Elechiguerra, and M.J. Yacaman: Characterization of low dimensional molybdenum sulfide nanostructures. Mater. Charact. 59, 204 (2008).

    CAS  Google Scholar 

  36. D.H. Galvan, A.P. Amarillas, and M. Jose-Yacaman: Metallic states at the edges of MoS2 clusters. Catal. Lett. 132(3–4), 323 (2009).

    CAS  Google Scholar 

  37. L.S. Byskov, J.K. Norskov, B.S. Clausen, and H. Topsoe: DFT calculations of unpromoted and promoted MoS2based hydrodesulfurization catalysts. J. Catal. 187(1), 109 (1999).

    CAS  Google Scholar 

  38. J.V. Lauritsen, M. Nyberg, R.T. Vang, M. Bollinger, B. Clausen, H. Topsøe, K.W. Jacobsen, E. Lægsgaard, J. Nørskov, and F. Besenbacher: Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters. Nanotechnology 14(3), 385 (2003).

    CAS  Google Scholar 

  39. L.S. Byskov, J.K. Norskov, B.S. Clausen, and H. Topsoe: Edge termination of MoS2 and CoMoS catalyst particles. Catal. Lett. 64(2–4), 95 (2000).

    CAS  Google Scholar 

  40. Z. Liu, K. Suenaga, Z. Wang, Z. Shi, E. Okunishi, and S. Iijima: Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon. Nat. Commun. 2, 213 (2011).

    Google Scholar 

  41. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695 (2010).

    CAS  Google Scholar 

  42. J.A. Spirko, M.L. Neiman, A.M. Oelker, and K. Klier: Electronic structure and reactivity of defect MoS2: I. Relative stabilities of clusters and edges, and electronic surface states. Surf. Sci. 542(3), 192 (2003).

    CAS  Google Scholar 

  43. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002).

    CAS  Google Scholar 

  44. J. Zhang, J.M. Soon, K.P. Loh, J. Yin, J. Ding, M.B. Sullivian, and P. Wu: Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7(8), 2370 (2007).

    CAS  Google Scholar 

  45. C.N.R Rao, H.S.S.R. Matte, K.S. Subrahmanyam, and U. Maitra: Unusual magnetic properties of graphene and related materials. Chem. Sci. 3(1), 45 (2012).

    CAS  Google Scholar 

  46. S. Tongay, S.S. Varnoosfaderani, B.R. Appleton, J. Wu, and A.F. Hebard: Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 101(12), 123105 (2012).

    Google Scholar 

  47. S. Mathew, K. Gopinadhan, T.K. Chan, X.J. Yu, D. Zhan, L. Cao, A. Rusydi, M.B.H Breese, S. Dhar, Z.X. Shen, T. Venkatesan, and J.T.L Thong: Magnetism in MoS2 induced by proton irradiation. Appl. Phys. Lett. 101(10), 102103 (2012).

    Google Scholar 

  48. R. Peierls: Quantum Theory of Solids (Clarendon Press, Oxford, UK, 1964).

    Google Scholar 

  49. A. Rycerz, J. Tworzydlo, and C.W.J Beenakker: Valley filter and valley valve in graphene. Nat. Phys. 3(3), 172 (2007).

    CAS  Google Scholar 

  50. Y.W. Son, M.L. Cohen, and S.G. Louie: Half-metallic graphene nanoribbons. Nature 444(7117), 347 (2006).

    CAS  Google Scholar 

  51. W. Yao, S.A. Yang, and Q. Niu: Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102(9), 096801 (2009).

    Google Scholar 

  52. C.T. Koch: Determination of Core Structure Periodicity and Point Defect Density along Dislocations (Arizona State University, Tempe, AZ, 2002).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the EU’s 7th Framework Program through the e-I3 contract ETSF (211956). X.L-L. and S.B. acknowledge funding by the ANR (Grant No. JC05 46741). M.A.L.M. acknowledges support from the Portuguese FCT (Grant No. PTDC/FIS/73578/2006) and from the French ANR (Grant No. ANR-08-CEXC8-008-01). A.R. acknowledges funding by the Spanish MEC (Grant No. FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (Grant No. IT-319-07), NANO-ERA CHEMISTRY, Barcelona Supercomputing Center, “Red Espanola de Supercomputacion,” and SGIker ARINA (UPV/EHU). L.F.S. and X.L-L. acknowledge the following funding: NSF-PREM DMR-0934218, UTSA-TRAC FY2011-2012. L.F.S., H.B., and X.L-L. thank the Computational Biology Initiative (UTHSCSA/UTSA) for providing access and training to the analysis software used. L.F.S., H.B., and X.L-L. acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. Some initial calculations were also performed at the Laboratorio de Computaçâo Avançada of the University of Coimbra. L.F.S. wants to thank Dr. Daniel Bahena Uribe (Department of Physics and Astronomy, The University of Texas at San Antonio) for his help and assistance in the parameters for running the STEM simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Fernandez Seivane.

Additional information

This paper has been selected as an Invited Feature Paper.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr. The following plots are provided: bands of Bulk and Monolayer MoS2, and Simulated STEM images52 for the 4-Mo case with 50–100% Saturation, Energy tables.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seivane, L.F., Barron, H., Botti, S. et al. Atomic and electronic properties of quasi-one-dimensional MoS2 nanowires. Journal of Materials Research 28, 240–249 (2013). https://doi.org/10.1557/jmr.2012.355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.355

Navigation