Skip to main content
Log in

Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, Fe3O4 nanospheres, sponges, and urchins were prepared. Investigation of static magnetic and microwave electromagnetic (EM) characteristics of polymorphic Fe3O4 nanomaterials showed that morphology plays a crucial role in determining the resulting properties. Compared with Fe3O4 nanospheres and urchins, enhanced saturation magnetization and coercivity were observed in Fe3O4 sponges composed of ordered nanofibers. Enhancement of saturation magnetization and coercivity are associated with increased magnetic interactions and shape anisotropy, respectively. The Fe3O4 sponges and urchins produced reflection loss (RL) values of −35.77 dB at 8.0 GHz and −43.23 dB at 16.8 GHz, respectively. The excellent microwave absorption performance is ascribed to their unique morphologies. Such morphologies resulted in reinforced EM parameters and multiresonant behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. G.X. Tong, W.H. Wu, J.G. Guan, H.S. Qian, and J.H. Yuan: Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. J. Alloy. Comp. 509, 4320 (2011).

    Article  CAS  Google Scholar 

  2. X.S. Fang, C.H. Ye, T. Xie, Z.Y. Wang, J.W. Zhao, and L.D. Zhang: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 (2006).

    Article  Google Scholar 

  3. M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, and Y.J. Chen: Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91, 203110 (2007).

    Article  Google Scholar 

  4. R.F. Zhou, L. Qiao, H.T. Feng, J.T. Chen, D. Yan, Z.G. Wu, and P.X. Yan: Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104, 094101 (2008).

    Article  Google Scholar 

  5. D. Yan, S. Cheng, R.F. Zhou, J.T. Chen, J.J. Feng, H.T. Feng, H.J. Li, Z.G. Wu, J. Wang, and P.X. Yan: Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20, 105706 (2009).

    Article  CAS  Google Scholar 

  6. G.X. Tong, J.G. Guan, Z.D. Xiao, F.Z. Mou, W. Wang, and G.Q. Yan: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535 (2008).

    Article  CAS  Google Scholar 

  7. H. Yu, M. Chen, P.M. Rice, S.X. Wang, R.L. White, and S.H. Sun: Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 5, 379 (2005).

    Article  CAS  Google Scholar 

  8. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, and J.M. Tarascon: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006).

    CAS  Google Scholar 

  9. H. Zeng, J. Li, Z.L. Wang, J.P. Liu, and S.H. Sun: Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 4, 187 (2004).

    Article  CAS  Google Scholar 

  10. S. Peng and S.H. Sun: Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 46, 4155 (2007).

    Article  CAS  Google Scholar 

  11. Y.J. Chen, P. Gao, R.X. Wang, C.L. Zhu, L.J. Wang, M.S. Cao, and H.B. Jin: Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 113, 10061 (2009).

    Article  CAS  Google Scholar 

  12. J. Cao, W.Y. Fu, H.B. Yang, Q.J. Yu, Y.Y. Zhang, S.M. Wang, H. Zhao, Y.M. Sui, X.M. Zhou, W.Y. Zhao, Y. Leng, H. Zhao, H. Chen, and X.F. Qi: Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe3O4 nanocomposites. Mater. Sci. Eng., B 175, 56 (2010).

    Article  CAS  Google Scholar 

  13. R. Zhao, K. Jia, J.J. Wei, J.X. Pu, and X.B. Liu: Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater. Lett. 64, 457 (2010).

    Article  CAS  Google Scholar 

  14. W.G. Yu, T.L. Zhang, J.G. Zhang, X.J. Qiao, L. Yang, and Y.H. Liu: The synthesis of octahedral nanoparticles of magnetite. Mater. Lett. 60, 2998 (2006).

    Article  CAS  Google Scholar 

  15. G.Q. Yan, J.G. Guan, and W. Wang: Monodispersed Fe3O4 hollow submicro-spheres prepared by pyrolysis-deoxidization. Acta Phys. Chim. Sin. 23, 1958 (2007).

    Article  CAS  Google Scholar 

  16. G.X. Tong, J.G. Guan, and Q.J. Zhang: Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Mater. Chem. Phys. 127, 371 (2011).

    Article  CAS  Google Scholar 

  17. G.X. Tong, J.G. Guan, W.H. Wu, L.C. Li, Y. Guan, and Q. Hua: Preparation and electrochemical properties of urchin-like α-Fe2O3 nanomaterials. Sci. China Technol. Sci. 53, 1897 (2010).

    Article  CAS  Google Scholar 

  18. G.X. Tong: Study on gas flow/gas bubbles induced self-assembly techniques and magnetic nanostructures. Ph.D. Dissertation. Wuhan University of Technology, Wuhan, China, 119 (2009).

  19. Von Osterhout: Magnetic Oxides, in: Magnetic Oxides, edited by D.S. Craik (Wiley, New York, 1975), p. 700.

    Google Scholar 

  20. X. Wang, R.Z. Gong, P.G. Li, L.Y. Liu, and W.M. Cheng: Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes. Mater. Sci. Eng., A 466, 178 (2007).

    Article  Google Scholar 

  21. Y.D. Kim, J.Y. Chung, J. Kim, and H. Jeon: Formation of nanocrystalline Fe-Co powders produced by mechanical alloying. Mater. Sci. Eng., A 219, 17 (2000).

    Article  Google Scholar 

  22. J. Wang, J.J. Sun, Q. Sun, and Q.W. Chen: One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 38, 1113 (2003).

    Article  CAS  Google Scholar 

  23. Z.W. Li, L. Chen, C.K. Ong, and Z. Yang: Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites. J. Mater. Sci. 40, 719 (2005).

    Article  CAS  Google Scholar 

  24. S. Mørup, M.B. Madsen, J. Franck, J. Villandsen, and C.J.W. Koch: A new interpretation of Mössbauer spectra of microcrystalline goethite: “Super-ferromagnetism” or “super-spin-glass” behaviour? J. Magn. Magn. Mater. 40, 163 (1983).

    Article  Google Scholar 

  25. Z.W. Li, C.K. Ong, Z. Yang, F.L. Wei, X.Z. Zhou, J.H. Zhao, and A.H. Morrish: Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles. Phys. Rev. B 62, 6530 (2000).

    Article  CAS  Google Scholar 

  26. P.M.A. de Bakker, E. De Grave, R.E. Vandenberghe, and L.H. Bowen: Mössbauer study of small-particle maghemite. Hyperfine Interact. 54, 493 (1990).

    Article  Google Scholar 

  27. C. Wang, X.J. Han, P. Xu, J.Y. Wang, Y.C. Du, X.H. Wang, W. Qin, and T. Zhang: Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 114, 3196 (2010).

    Article  CAS  Google Scholar 

  28. H.L. Niu, Q.W. Chen, M. Ning, Y.S. Jia, and X.J. Wang: Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 108, 3998 (2004).

    Article  Google Scholar 

  29. G.X. Tong, J.G. Guan, Z.D. Xiao, X. Huang, and Y. Guan: In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate. J. Nanopart. Res. 12, 3025 (2010).

    Article  CAS  Google Scholar 

  30. G.X. Tong, Q. Hua, W.H. Wu, M.Y. Qin, L.C. Li, and P.J. Gong: Effect of liquid-solid ratio on the morphology, structure, conductivity, and electromagnetic characteristics of iron particles. Sci. China Technol. Sci. 54, 484 (2011).

    Article  CAS  Google Scholar 

  31. Y. Yang, C.L. Xu, Y.X. Xia, T. Wang, and F.S. Li: Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloy. Comp. 493, 549 (2010).

    Article  CAS  Google Scholar 

  32. G.X. Tong, W.H. Wu, Q. Hua, Y.Q. Miao, J.G. Guan, and H.S. Qian: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges. J. Alloy. Comp. 509, 451 (2011).

    Article  CAS  Google Scholar 

  33. G.X. Tong, J.G. Guan, X.A. Fan, W. Wang, and W. Li: Influences of pyrolysis temperature on static magnetic and microwave electromagnetic properties of polycrystalline iron fibers. Acta Metall. Sin. 44, 867 (2008).

    CAS  Google Scholar 

  34. S.B. Ni, X.L. Sun, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, and D.Y. He: Low-temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater. Chem. Phys. 124, 353 (2010).

    Article  CAS  Google Scholar 

  35. X.A. Li, X.J. Han, Y.J. Tan, and P. Xu: Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles. J. Alloy. Comp. 464, 352 (2008).

    Article  CAS  Google Scholar 

  36. Z.B. Li, Y.D. Beng, B. Shen, and W.B. Hu: Preparation and microwave absorption properties of Ni-Fe3O4 hollow spheres. Mater. Sci. Eng., B 146, 112 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Natural Science Foundation of Zhejiang Province (Project Nos. Y4100022, Y4110025, and Y4090636), Special Grand Science-Technology Project in Zhejiang Province (No. 2010C11053), the Key Innovative Team of Magnetic Materials in Zhejiang Province (2011R09006-06), and Science and Technology Projects from Jinhua City (Grant Nos. 2010A12066 and 2011A13173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiu Tong.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, G., Wu, W., Qiao, R. et al. Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials. Journal of Materials Research 26, 1639–1645 (2011). https://doi.org/10.1557/jmr.2011.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.131

Navigation