Skip to main content
Log in

Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWNTs) have been used as electrocatalyst support for fuel cells. A toluene solution of a platinum salt, bis(dibenzylideneacetone) platinum, has been used for the first time to decorate the outer surface of SWNT bundles with Pt nanoparticles. The obtained Pt/SWNT materials were then used as catalytic layer in electrodes for fuel cell electrocatalysis. The used platinum salt concentration in the initial SWNT dispersion determined the Pt nanoparticle size and, consequently, the activity of the Pt/SWNT electrodes toward the oxygen reduction reaction. The achieved results were compared with those corresponding to a commercial Pt/carbon black catalyst with similar Pt loading and surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ansón, J. Jagiello, J.B. Parra, M.L. Sanjuán, A.M. Benito, W.K. Maser, M.T. Martínez: Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J. Phys. Chem. B 108, 15820 (2004).

    Article  CAS  Google Scholar 

  2. W. Huang, C. Yang, S. Zhang: Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Anal. Bioanal. Chem. 375, 703 (2003).

    Article  CAS  Google Scholar 

  3. K.Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang: Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14, 505 (2004).

    Article  CAS  Google Scholar 

  4. X.R. Ye, Y. Lin, C.M. Wai: Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem. Commun. 5, 642 (2003).

    Article  CAS  Google Scholar 

  5. T.S. Armadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).

    Article  Google Scholar 

  6. M. Boutonnet, J. Kizling, P. Stenius: The preparation of monodispersed colloidal metal particles from microemulsions. Colloids Surf. 5, 209 (1982).

    Article  CAS  Google Scholar 

  7. M. Arturo López-Quintela, J. Rivas: Chemical reactions in microemulsions: A powerful method to obtain ultrafine particles. J. Colloid Interface Sci. 158, 446 (1993).

    Article  Google Scholar 

  8. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto: Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem. Mater. 12, 3006 (2000).

    Article  CAS  Google Scholar 

  9. T. Fujimoto, S. Teraushi, H. Umehara, I. Kojima, W. Henderson: Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem. Mater. 13, 1057 (2001).

    Article  CAS  Google Scholar 

  10. W.X. Tu, H.Y. Liu: Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem. Mater. 12, 564 (2000).

    CAS  Google Scholar 

  11. S. Komarneni, D.S. Li, B. Newalkar, H. Katsuki, A.S. Bhalla: Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18, 5959 (2002).

    CAS  Google Scholar 

  12. D. Thompsett: Catalysts for the proton exchange membrane fuel cell, in Fuel Cell Technology Handbook, edited by G. Hoogers (CRC Press, New York, 2003).

  13. H.G. Petrow and R.J. Allen: Catalytic platinum metal particles on a substrate and method of preparing the catalysts. U.S. Patent No. 3992331 (1976).

    Google Scholar 

  14. J. Prabhuram, X. Wang, C.L. Hui, I.M. Hsing: Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel-cell applications. J. Phys. Chem. B 107, 11057 (2003).

    CAS  Google Scholar 

  15. P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes. Nature 361, 333 (1993).

    CAS  Google Scholar 

  16. Y.L. Hsin, K.C. Hwang, F.R. Chen, J.J. Kai: Production an in situ metal filling of carbon nanotubes in water. Adv. Mater. 13, 830 (2001).

    CAS  Google Scholar 

  17. G.L. Che, B.B. Lakshmi, C.R. Martín, E.R. Fisher: Metal nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15, 750 (1999).

    CAS  Google Scholar 

  18. Z.L. Liu, X.H. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan: Preparation and characterization of platinum-based electrocatalysts of multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18, 4054 (2002).

    CAS  Google Scholar 

  19. R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes: The route towards applications. Science 297, 787 (2002).

    CAS  Google Scholar 

  20. P.M. Ajayan: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).

    CAS  Google Scholar 

  21. C. Bernard, J.M. Planeix, B. Valérie: Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl. Catal., A 173, 175 (1998).

    Google Scholar 

  22. B. Xue, P. Chen, Q. Hong, J. Lin, K.L. Tan: Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem. 11, 2378 (2001).

    CAS  Google Scholar 

  23. P. Chen, X. Wu, J. Lin, K.L. Tan: Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template. J. Phys. Chem. B 103, 4559 (1999).

    CAS  Google Scholar 

  24. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan: Applications of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935 (1994).

    CAS  Google Scholar 

  25. R. Yu, L. Chen, Q. Liu, J. Lin, K.L. Tan, S.C. Ng, H.S.O Chan, G.Q. Xu, T.S.A Hor: Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718 (1998).

    CAS  Google Scholar 

  26. V. Lordi, N. Yao, J. Wei: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001).

    CAS  Google Scholar 

  27. T.W. Ebbesen, H. Hiura, M.E. Bisher, M.M.J Treacy, J.L. Shreeve-Keyer, R.C. Haushalter: Decoration of carbon nanotubes. Adv. Mater. 8, 155 (1996).

    CAS  Google Scholar 

  28. L.M. Ang, T.S.A Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, J.L.S Wang: Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 11, 2115 (1999).

    CAS  Google Scholar 

  29. EG&G Services Parsons Inc.: Science Applications International Corporation: Fuel Cell Handbook, 5th ed. (U.S. Department of Energy, Morgantown, WV, 2002), p. 3.

    Google Scholar 

  30. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin: Carbon nanotubes as support for cathode catalyst a direct methanol fuel cell. Carbon 40, 791 (2002).

    Article  CAS  Google Scholar 

  31. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin: Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 107, 6292 (2003).

    Article  CAS  Google Scholar 

  32. M.C. Román-Martínez, D. Cazorla-Amorós, A. Linares-Solano, C. Salinas-Martínez de Lecea, H. Yamashita, M. Anpo: Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon 33, 3 (1995).

    Article  Google Scholar 

  33. V. Lordi, N. Yao, J. Wei: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001).

    Article  CAS  Google Scholar 

  34. D.J. Guo, H.L. Lin: High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. J. Electroanal. Chem. 573, 197 (2004).

    CAS  Google Scholar 

  35. G. Wu, Y.S. Chen, B.Q. Xu: Remarkable support effect of SWNTs in Pt catalysis for methanol electrooxidation. Electrochem. Commun. 7, 1237 (2005).

    Article  CAS  Google Scholar 

  36. Z. Liu, L.M. Gan, L. Hong, W. Chen, J.Y. Lee: Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J. Power Sources 139, 73 (2005).

    Article  CAS  Google Scholar 

  37. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001).

    Article  CAS  Google Scholar 

  38. C. Journet, W.K. Maser, P. Bernier, A. Lamy la de Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fisher: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).

    Article  CAS  Google Scholar 

  39. F. Picó, J.M. Rojo, M.L. Sanjuán, A. Ansón, A.M. Benito, M.A. Callejas, W.K. Maser, M.T. Martínez: Single-walled carbon nanotubes as electrodes in supercapacitors. J. Electrochem. Soc. 151 A831(2004).

  40. K. Moseley, P.M. Maitlis: Acetylenes and noble metal compounds. Part XI. Reactions of di-methyl acetylenedicarboxylate with dibenzylideneaceton-palladium and -platinum complexes: Pallada- and platina-cyclopetadienes. J. Chem. Soc., Dalton Trans. 2, 169 (1974).

    Google Scholar 

  41. S. Litster, G. McLean: PEM fuel electrodes. J. Power Sources 130, 61 (2004).

    CAS  Google Scholar 

  42. R. Woods: Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and the determination of real surface area. J. Electroanal. Chem. 49, 217 (1974).

    CAS  Google Scholar 

  43. M.M.V.M Souza, D.A.G Aranda, C.A.C Perez, M. Schmal: Surface characterization of zirconia-coated alumina as support for Pt particles. Phys. Status Solidi A 187, 297 (2001).

    CAS  Google Scholar 

  44. W. Mista, M. Zawadzki, J. Wrzyszcz, H. Grabowska, J. Trawczynski: Thermal stability of platinum supported zinc aluminate combustion catalysts. Pol. J. Chem. 75, 1561 (2001).

    CAS  Google Scholar 

  45. M. Zawadzki, W. Mista, L. Kepinski: Metal-support effects of platinum supported on zinc aluminate. Vacuum 63, 291 (2001).

    CAS  Google Scholar 

  46. B.E. Warren: X-Ray Diffraction. (Addison-Wesley, Reading, MA, 1996).

    Google Scholar 

  47. M. Terrones, W.K. Hsu, A. Schilder, H. Terrones, N. Grobert, J.P. Hare: Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66, 307 (1998).

    Article  CAS  Google Scholar 

  48. M. Gattrell, B. MacDougall: The oxygen reduction/evolution reaction, in Handbook of Fuel Cell Technology, Vol. 2, Part 5, edited by W. Vielstich, A. Lamm, and H.A. Gasteiger, (John Wiley & Sons Ltd., Chichester, UK, 2003).

  49. Y.H. Lin, X.L. Cui, C. Yen, C.M. Wai: Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B 109, 14410 (2005).

    Article  CAS  Google Scholar 

  50. J.E. Huang, D.J. Guo, Y.G. Yao, H.L. Li: High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. J. Electroanal. Chem. 577, 93 (2005).

    CAS  Google Scholar 

  51. J.W. Guo, T.S. Zhao, J. Prabhuram, C.W. Wong: Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells. Electrochim. Acta 50, 1973 (2005).

    CAS  Google Scholar 

  52. N. Rajalakshmi, H. Ryu, M.M. Shaijumon, S. Ramaprabhu: Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. J. Power Sources 140, 250 (2005).

    CAS  Google Scholar 

  53. K. Kinoshita: Carbon: Electrochemical and Physicochemical Properties (John Wiley, New York, 1976), p 299.

    Google Scholar 

  54. P.A. Christensen, A. Hammet: Techniques and Mechanism in Electrochemistry. (Chapman & Hall, London, 1994), p 228.

    Google Scholar 

  55. X. Wang, R. Kumar, D.J. Myers: Effect of voltage on platinum dissolution. Relevance to polymer electrolyte fuel cells. Electrochem. Solid State Lett. 9 A225(2006).

  56. F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming: Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discuss. 125, 357 (2004).

    CAS  Google Scholar 

  57. V. Raghuveer, A. Manthiram: Mesoporous carbons with controlled porosity as an electrocatalytic support for methanol oxidation. J. Electrochem. Soc. 152 A1504(2005).

  58. J. Prabhuram, T.S. Zhao, Z.K. Tang, R. Chen, Z.X. Liang: Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J. Phys. Chem. B 110, 5245 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafuente, E., Muñoz, E., Benito, A.M. et al. Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts. Journal of Materials Research 21, 2841–2846 (2006). https://doi.org/10.1557/jmr.2006.0355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0355

Navigation