Skip to main content
Log in

Rate dependence of shear banding and serrated flows in a bulk metallic glass

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using an infrared camera, we observed in situ dynamic shear-banding operations during compression of a bulk metallic glass at various strain rates. We demonstrated that the shear-banding events are highly dependent on strain rates, either intermittent at the lower strain rate or successive at the higher strain rate. Serrated plastic-flow behaviors are a result of shear-banding operations. These observations provide a new insight into inhomogeneous deformation of metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Greer: Metallic glasses. Science 267, 1947 (1995).

    Article  CAS  Google Scholar 

  2. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  3. A. Inoue, T. Zhang, and A. Takeuchi: Ferrous and nonferrous bulk amorphous alloys. Mater. Sci. Forum 269–272, 855 (1998).

    Article  Google Scholar 

  4. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).

    Article  CAS  Google Scholar 

  5. W.L. Johnson: Bulk amorphous metal—An emerging engineering material. JOM 54(3), 40 (2002).

    Article  CAS  Google Scholar 

  6. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  7. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  8. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).

    Article  CAS  Google Scholar 

  9. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  10. C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  11. G.P. Zhang, W. Wang, B. Zhang, J. Tan, and C.S. Liu: On rate-dependent serrated flow behavior in amorphous metals during nanoindentation. Scripta Mater. 52, 1147 (2005).

    Article  CAS  Google Scholar 

  12. C.A. Schuh, A.S. Argon, T.G. Nieh, and J. Wadsworth: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585 (2003).

    Article  CAS  Google Scholar 

  13. H.S. Chen: Plastic flow in metallic glasses under compression. Scripta Metall. 7, 931 (1973).

    Article  CAS  Google Scholar 

  14. H. Kimura and T. Masumoto: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31, 231 (1983).

    Article  Google Scholar 

  15. W.J. Wright, R.B. Schwarz, and W.D. Nix: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 229 (2001).

    Article  Google Scholar 

  16. W.J. Wright, R. Saha, and W.D. Nix: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans., JIM 42, 642 (2001).

    Article  CAS  Google Scholar 

  17. H. Kimura and T. Masumoto: Deformation and fracture of an amorphous Pd-Cu-Si alloy in V-notch bending tests—I. Model mechanics of inhomogeneous plastic flow in non-strain hardening solid. Acta Metall. 28, 1663 (1980).

    Article  CAS  Google Scholar 

  18. H. Kimura and T. Masumoto: Deformation and fracture of an amorphous Pd–Cu–Si alloy in V-notch bending tests—II. Ductile-brittle transition. Acta Metall. 28, 1677 (1980).

    Article  CAS  Google Scholar 

  19. T.C. Hufnagel, P. El-Deiry, and R.P. Vinci: Development of shear band structure during deformation of a Zr57Ti15Cu20Ni8Al10 bulk metallic glass. Scripta Mater. 43, 1071 (2000).

    Article  CAS  Google Scholar 

  20. Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, and A.I. Tyurin: Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater. 45, 947 (2001).

    Article  CAS  Google Scholar 

  21. C.A. Schuh, T.G. Nieh, and Y. Kawamura: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).

    Article  CAS  Google Scholar 

  22. W.H. Jiang and M. Atzmon: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).

    Article  CAS  Google Scholar 

  23. H. Kimura and T. Masumoto: A model of the mechanics of shear-crack propagation in tearing for amorphous metals. II. Kinetics of inhomogeneous flow. Philos. Mag. A 44, 1021 (1981).

    Article  CAS  Google Scholar 

  24. Z.F. Zhang, J. Eckert, and L. Schultz: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).

    Article  CAS  Google Scholar 

  25. Z.F. Zhang, H. Zhang, X.F. Pan, J. Das, and J. Eckert: Effect of aspect ratio of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 (2005).

    Article  CAS  Google Scholar 

  26. B. Yang, P.K. Liaw, G.Y. Wang, M.L. Morrison, C.T. Liu, R.A. Buchanan, and Y. Yokoyama: In situ thermographic observation of mechanical damage in bulk metallic glasses during fatigue and tensile experiments. Intermetallics 12, 1265 (2004).

    Article  CAS  Google Scholar 

  27. B. Yang, M.L. Morrison, P.K. Liaw, R.A. Raymond, G.Y. Wang, C.T. Liu, and M. Denda: Dynamic evolution of nanoscale shear bands in a bulk metallic glass. Appl. Phys. Lett. 86, 141904 (2005).

    Article  Google Scholar 

  28. J.J. Lewandowski and A.L. Greer: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).

    Article  CAS  Google Scholar 

  29. W.H. Jiang, G.J. Fan, H. Choo, and P.K. Liaw: Ductility of a Zr-based bulk metallic glass with different specimen’s geometries. Mater. Lett. (2006, in press).

    Google Scholar 

  30. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W.H., Fan, G.J., Liu, F.X. et al. Rate dependence of shear banding and serrated flows in a bulk metallic glass. Journal of Materials Research 21, 2164–2167 (2006). https://doi.org/10.1557/jmr.2006.0266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0266

Navigation