Skip to main content
Log in

Energetics of cubic Si3N4

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-temperature oxide melt drop solution calorimetry was used to study the energetics of formation of cubic silicon nitride prepared at high pressure. The standard enthalpy of formation of c-Si3N4 is −776.3 ± 9.5 kJ/mol. The calorimetric measurement of Si3N4 in 3Na2O·4MoO3 solvent was validated by comparing the enthalpy of formation for β–Si3N4 with previous work using alkali borate solvent. The enthalpy of transformation from β–to c-Si3N4 is 80.2 ± 9.6 kJ/mol. This value appears consistent with the observed synthesis conditions, which do not represent reversed equilibrium reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Hoffman and G. Petzow Microstructure design of Si3N4 based ceramics, in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by I.W. Chen, P.F. Becher, M. Mitomo, G. Petzow, and T.S. Yen (Mater. Res. Soc. Symp. Proc. 287 Pittsburgh, PA, 1993) p. 3.

    Google Scholar 

  2. D.R. Messier and W.J. Croft Silicon Nitride, in Preparation and Properties of Solid State Materials, edited by W.R. Wilcox (Marcel Dekker, Inc., New York and Basel 7 1982) p. 131.

    CAS  Google Scholar 

  3. A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, Fueß H., P. Kroll and R. Goehler: Synthesis of cubic silicon nitride. Nature 400, 340 (1999).

    Article  CAS  Google Scholar 

  4. S.K. Deb, J. Dong, H. Hubert, P.F. McMillan and O.F. Sankey: The Raman spectra of the hexagonal and cubic (spinel) forms of Ge3N4: An experimental and theoretical study. Solid State Commun. 114, 137 (2000).

    Article  CAS  Google Scholar 

  5. T. Sekine, H. He, T. Kobayashi, M. Zhang and F. Xu: Shock-induced transformation of β–Si3N4 to a high-pressure cubic-spinel phase. App. Phys. Lett. 76, 3706 (2000).

    Article  CAS  Google Scholar 

  6. H. He, T. Sekine, T. Kobayashi and K. Kimoto: Phase transformation of germanium nitride (Ge3N4) under shock wave compression. J. App. Phys. 90, 4403 (2001).

    Article  CAS  Google Scholar 

  7. S.D. Mo, L. Ouyang, W.Y. Ching, I. Tanaka, Y. Koyama and R. Riedel: Interesting physical properties of the new spinel phase of Si3N4 and C3N4. Phys. Rev. Lett. 83, 5046 (1999).

    Article  CAS  Google Scholar 

  8. J. Dong, O.F. Sankey, S.K. Beb, G. Wolf and P.F. McMillan: Theoretical study of beta–Ge3N4 and its high-pressure spinel gamma phase. Phys. Rev. B 61, 11979 (2000).

    Article  CAS  Google Scholar 

  9. J. Liang, L. Topor, A. Navrotsky and M. Mitomo: Silicon nitride: Enthalpy of formation of the α- and β-polymorphs and the effect of C and O impurities. J. Mater. Res. 14, 1959 (1999).

    Article  CAS  Google Scholar 

  10. T. Sekine: Shock wave chemical synthesis. Eur. J. Solid State Inorg. Chem. 34, 823 (1997).

    CAS  Google Scholar 

  11. T. Sekine: Shock synthesis of cubic silicon nitride. J. Am. Ceram. Soc. 85, 113 (2002).

    Article  CAS  Google Scholar 

  12. A. Navrotsky: Thermochemical studies of nitrides and oxynitrides by oxidative oxide melt calorimetry. J. Alloys Compd. 312, 300 (2001).

    Article  Google Scholar 

  13. A. Navrotsky: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).

    Article  CAS  Google Scholar 

  14. A. Navrotsky: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  15. M.R. Ronade, F. Tessier, A. Navrotsky, V.J. Leppert, S.H. Risbud, F.J. DiSalvo and C.M. Balkas: Enthalpy of formation of gallium nitride. J. Phys. Chem. B. 104, 4060 (2000).

    Article  Google Scholar 

  16. R.A. Robie, B.S. Hemingway and J.R. Fisher In Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geol. Surv. Bull. 1452, Washington, DC 1979).

    Google Scholar 

  17. K. Okada, K. Fukuyama and Y. Kameshima: Characterization of surface-oxidized phase in silicon nitride and silicon oxynitride powders by x-ray photoelectron spectroscopy. J. Am. Ceram. Soc. 78, 2021 (1995).

    Article  CAS  Google Scholar 

  18. Y.M. Li, M.B. Kruger, J.H. Nguyen, W.A. Caldwell and R. Jeanloz: Bistable electroluminescence of tunneling silicon MOS structures. Solid State Commun. 103, 107 (1997).

    Article  CAS  Google Scholar 

  19. J.W. Swegle: Irreversible phase transitions and wave propagation in silicate geologic materials. J. Appl. Phys. 68, 1563 (1990).

    Article  CAS  Google Scholar 

  20. M. Schwartz, G. Miehe, A. Zerr, E. Kroke, B.T. Poe, H. Fuess and R. Riedel: Spinel-Si3N4: Multi-anvil press synthesis and structure refinement. Adv. Mater. 12, 883 (2000).

    Article  Google Scholar 

  21. Y. Kanke and A. Navrotsky: A calorimetric study of the lanthanide aluminum oxides and the lanthanide gallium oxides: stability of the perovskites and the garnets. J. Solid State Chem. 141, 424 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahong Zhang.

Additional information

Present address: Intel Corporation, 2501 NW 229th St, Hillsboro, OR 97124.

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Navrotsky, A. & Sekine, T. Energetics of cubic Si3N4. Journal of Materials Research 21, 41–44 (2006). https://doi.org/10.1557/jmr.2006.0033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0033

Navigation