Skip to main content
Log in

Variable band gap conjugated polymers for optoelectronic and redox applications

  • Article
  • Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report here on the utilization of variable band gap conjugated polymers for optoelectronic redox applications comprising organic photovoltaics, color tunable light emitting diodes, and electrochromics. For the evaluation of morphology in photovoltaicdevices, atomic force microscopy, and optical microscopy provided direct visualization of the blend film structure. The evolution of the morphology in two and three component blends incorporating poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenlenevinylene] (MEH-PPV), poly(methylmethacrylate) (PMMA), and [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) was investigated. It was found that while insulating PMMA can be used to modulate the phase separation in these blends, a bicontinuous network of donor and acceptor was required to achieve the best device results. Similarily, a MEH-PPVcopolymer with a decreased conjugation length has been used for investigating inter- and intramolecular photoinduced charge transfer in the presence of PMMA and PCBM.We fabricated MEH-PPV/PCBM solar cells that have power conversion efficiencies up to 1.5% with a range of 0.7-1.5%, dependent on the nature of the MEH-PPV used. This further indicates that in addition to blend morphology, polymer structure is critical for optimizing device performance. To this end, the concept of an ideal donor for photovoltaic devices based on poly[2,5-di(3,7-dialkoxy)-cyanoterephthalylidene] is described and two donor-acceptor polymers based on cyanovinylene (CNV) and dioxythiophene are discussed as representative examples of soluble narrow band gap polymers synthesized in our group. For light emitting applications, utilization of two blue emitting conjugated polymers poly (9,9-dioctylfluorene) (PFO) and poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(9,ethyl-3,6-carbazole)] (PFH-PEtCz)is presented for a color tunable polymer light emitting diode that emits orange, green, and blue light with a voltage range of 7-10 V as a function of the total conjugated polymer content in PMMA and is attributed to the phase separation between the conjugated polymers. Finally, the narrow band gap conjugated polymer, poly[bis(3,4-propylenedioxythiophene-dihexyl)]-cyanovinylene has been characterized for its electrochromic properties, illustrating the multifunctional nature of variable band gap conjugated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Peumans S. Uchida and S.R. Forrest: Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425 158 (2003).

    Article  CAS  Google Scholar 

  2. S.E. Shaheen C.J. Brabec N.S. Sariciftci F. Padinger T. Fromherz and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78 841 (2001).

    Article  CAS  Google Scholar 

  3. F.L. Zhang M. Johansson M.R. Andersson J.C. Hummelen and O. Inganas: Polymer solar cells based on MEH-PPV and PCBM. Synth. Met. 137 1401 (2003).

    Article  CAS  Google Scholar 

  4. O. Inganas L.S. Roman F. Zhang D.M. Johansson M.R. Andersson and J.C. Hummelen: Recent progress in thin film organic photodiodes. Synth. Met. 121 1525 (2001).

    Article  CAS  Google Scholar 

  5. C.J. Brabec N.S. Sariciftci and J.C. Hummelen: Plastic solar cells. Adv. Funct. Mater. 11 15 (2001).

    Article  CAS  Google Scholar 

  6. A. Dhanabalan Van J.K.J. Duren Van P.A. Hal Van J.L.J. Dongen and R.A.J. Janssen: Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv. Funct. Mater. 11 255 (2001).

    Article  CAS  Google Scholar 

  7. N. Camaioni L. Garlaschelli A. Geri M. Maggini G. Possamai and G. Ridolfi: Solar cells based on poly(3-alkyl)thiophenes and [60]fullerene: A comparative study. J. Mater. Chem. 12 2065 (2002).

    Article  CAS  Google Scholar 

  8. M.T. Rispens A. Meetsma R. Rittberger C.J. Brabec N.S. Sariciftci and J.C. Hummelen: Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV: PCBM plastic solar cells. Chem. Commun. 2116 (2003).

  9. S. Alem R. de Bettignies J.M. Nunzi and M. Cariou: Efficient polymer-based interpenetrated network photovoltaic cells. Appl. Phys. Lett. 84 2178 (2004).

    Article  CAS  Google Scholar 

  10. F. Padinger R.S. Rittberger and N.S. Sariciftci: Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13 85 (2003).

    Article  CAS  Google Scholar 

  11. D.L. Vangeneugden D.J.M. Vanderzande J. Salbeck P.A. van Hal R.A.J. Janssen J.C. Hummelen C.J. Brabec S.E. Shaheen and N.S. Sariciftci: Synthesis and characterization of a poly(1,3-dithienylisothianaphthene) derivative for bulk heterojunction photovoltaic cells. J. Phys. Chem. B 105 11106 (2001).

    Article  CAS  Google Scholar 

  12. T. Stubinger and W. Brutting: Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells. J. Appl. Phys. 90 3632 (2001).

    Article  CAS  Google Scholar 

  13. A. Gadisa M. Svensson M.R. Andersson and O. Inganas: Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative. Appl. Phys. Lett. 84 1609 (2004).

    Article  CAS  Google Scholar 

  14. Q. Zhou Q. Hou L. Zheng X. Deng G. Yu and Y. Cao: Fluorenebased low band-gap copolymers for high performance photovoltaic devices. Appl. Phys. Lett. 84 1653 (2004).

    Article  CAS  Google Scholar 

  15. C.J. Brabec A. Cravino D. Meissner N.S. Sariciftci T. Fromherz M.T. Rispens L. Sanchez and J.C. Hummelen: Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 11 374 (2001).

    Article  CAS  Google Scholar 

  16. D. Chirvase Z. Chiguvare M. Knipper J. Parisi V. Dyakonov and J.C. Hummelen: Electrical and optical design and characterization of regioregular poly(3-hexylthiophene-2,5-diyl)/fullerene-based heterojunction polymer solar cells. Synth. Met. 138 299 (2003).

    Article  CAS  Google Scholar 

  17. A.F. Nogueira I. Montanari J. Nelson J.R. Durrant C. Winder N.S. Sariciftci and C. Brabec: Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. J. Phys. Chem. B 107 1567 (2003).

    Article  CAS  Google Scholar 

  18. F. Garnier: Organic-based electronics a la carte. Acc. Chem. Res. 32 209 (1999).

    Article  CAS  Google Scholar 

  19. E. Moons: Conjugated polymer blends: Linking film morphology to performance of light emitting diodes and photodiodes. J. Phys.: Condens. Matter 14 12235 (2002).

    CAS  Google Scholar 

  20. Van P.F. Hutten and G. Hadziioannou: The role of interfaces in photovoltaic devices. Monatsh. Chem. 132 129 (2001).

    Article  Google Scholar 

  21. J. Liu Y. Shi and Y. Yang: Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv. Funct. Mater. 11 420 (2001).

    Article  CAS  Google Scholar 

  22. D. Gebeyehu C.J. Brabec F. Padinger T. Fromherz J.C. Hummelen D. Badt H. Schindler and N.S. Sariciftci: The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth. Met. 118 1 (2001).

    Article  CAS  Google Scholar 

  23. T. Martens D’J. Haen T. Munters Z. Beelen L. Goris J. Manca D’M. Olieslaeger D. Vanderzande De L. Schepper and R. Andriessen: Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM. Synth. Met. 138 243 (2003).

    Article  CAS  Google Scholar 

  24. X. Yang Van J.K.J. Duren R.A.J. Janssen M.A.J. Michels and J. Loos: Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromol. 37 2151 (2004).

    Article  CAS  Google Scholar 

  25. M.M. Wienk J.M. Kroon W.J.H. Verhees J. Knol J.C. Hummelen P.A. van Hal and R.A.J. Janssen: Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42 3371 (2003).

    Article  CAS  Google Scholar 

  26. C.J. Brabec F. Padinger N.S. Sariciftci and J.C. Hummelen: Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. J. Appl. Phys. 85 6866 (1999).

    Article  CAS  Google Scholar 

  27. D. Braun and A.J. Heeger: Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58 1982 (1991).

    Article  CAS  Google Scholar 

  28. J.H. Burroughes D.D.C. Bradley A.R. Brown R.N. Marks K. Mackay R.H. Friend P.L. Burns and A.B. Holmes: Light-emitting diodes based on conjugated polymers. Nature 347 539 (1990).

    Article  CAS  Google Scholar 

  29. A. Kraft A.C. Grimsdale and A.B. Holmes: Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed. 37 403 (1998).

    Article  CAS  Google Scholar 

  30. Y.Z. Wang R.G. Sun F. Meghdadi G. Leising and A.J. Epstein: Multicolor multilayer light-emitting devices based on pyridine-containing conjugated polymers and para-sexiphenyl oligomer. Appl. Phys. Lett. 74 3613 (1999).

    Article  CAS  Google Scholar 

  31. C.C. Huang H.F. Meng G.K. Ho C.H. Chen C.S. Hsu J.H. Huang S.F. Horng B.X. Chen and L.C. Chen: Color-tunable multilayer light-emitting diodes based on conjugated polymers. Appl. Phys. Lett. 84 1195 (2004).

    Article  CAS  Google Scholar 

  32. R. Gowri D. Mandal B. Shivkumar and S. Ramakrishnan: Synthesis of novel poly[(2,5-dimethoxy-p-phenylene)vinylene] precursors having two eliminatable groups: An approach for the control of conjugation length. Macromol. 31 1819 (1998).

    Article  CAS  Google Scholar 

  33. S.H. Jin S.Y. Kang I.S. Yeom J.Y. Kim S.H. Park K. Lee Y.S. Gal and H.N. Cho: Color-tunable electroluminescent polymers by substituents on the poly(p-phenylenevinylene) derivatives for light-emitting diodes. Chem. Mater. 14 5090 (2002).

    Article  CAS  Google Scholar 

  34. M.D. McGehee T. Bergstedt C. Zhang A.P. Saab O’M.B. Regan G.C. Bazan V.I. Srdanov and A.J. Heeger: Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv. Mater. 11 1349 (1999).

    Article  CAS  Google Scholar 

  35. D.B. Romero M. Schaer L. Zuppiroli B. Cesar and B. Francois: Effects of doping in polymer light-emitting diodes. Appl. Phys. Lett. 67 1659 (1995).

    Article  CAS  Google Scholar 

  36. L. Ding F.E. Karasz Z. Lin M. Zheng L. Liao and Y. Pang: Effect of Foerster energy transfer and hole transport layer on performance of polymer light-emitting diodes. Macromol. 34 9183 (2001).

    Article  CAS  Google Scholar 

  37. J. Morgado E. Moons R.H. Friend and F. Cacialli: Optical and morphological investigations of non-homogeneity in polyfluorene blends. Synth. Met. 124 63 (2001).

    Article  CAS  Google Scholar 

  38. M.M. Alam C.J. Tonzola and S.A. Jenekhe: Nanophase-separated blends of acceptor and donor conjugated polymers. Efficient electroluminescence from binary polyquinoline/poly (2-methoxy-5-(2’-ethylhexyl-oxy)-1,4-phenylenevinylene) and polyquinoline/poly(3-octyl thiophene) blends. Macromol. 36 6577 (2003).

    Article  CAS  Google Scholar 

  39. M. Berggren O. Inganas G. Gustafsson J. Rasmusson M.R. Andersson T. Hjertberg and O. Wennerstrom: Light-emitting diodes with variable colors from polymer blends. Nature 372 444 (1994).

    Article  CAS  Google Scholar 

  40. P.S.M. Monk R.J. Mortimer and D.R. Rosseinsky: Electrochromism: Principles and Applications (VCH Weinheim Germany 1995).

    Book  Google Scholar 

  41. A.A. Argun P.H. Aubert B.C. Thompson I. Schwendeman C.L. Gaupp J. Hwang N.J. Pinto D.B. Tanner A.G. MacDiarmid and J.R. Reynolds: Multicolored electrochromism in polymers: Structures and devices. Chem. Mater. 16 4401 (2004).

    Article  CAS  Google Scholar 

  42. C.A. Thomas K. Zong K.A. Abboud P.J. Steel and J.R. Reynolds: Donor-mediated band gap reduction in a homologous series of conjugated polymers. J. Am. Chem. Soc. 126 16440 (2004).

    Article  CAS  Google Scholar 

  43. G. Soenmez I. Schwendeman P. Schottland K. Zong and J.R. Reynolds: N-substituted poly(3,4-propylenedioxypyrrole)s: High gap and low redox potential switching electroactive and electrochromic polymers. Macromol. 36 639 (2003).

    Article  CAS  Google Scholar 

  44. C.J. DuBois K.A. Abboud and J.R. Reynolds: Electrolyte-controlled redox conductivity and n-type doping in poly(bis-EDOT-pyridine)s. J. Phys. Chem. B 108 8550 (2004).

    Article  CAS  Google Scholar 

  45. I. Schwendeman J. Hwang D.M. Welsh D.B. Tanner and J.R. Reynolds: Combined visible and infrared electrochromism using dual polymer devices. Adv. Mater. 13 634 (2001).

    Article  CAS  Google Scholar 

  46. I. Schwendeman R. Hickman G. Soenmez P. Schottland K. Zong D.M. Welsh and J.R. Reynolds: Enhanced contrast dual polymer electrochromic devices. Chem. Mater. 14 3118 (2002).

    Article  CAS  Google Scholar 

  47. J.K.J. Van Duren X. Yang J. Loos C.W.T. Bulle-Lieuwma A.B. Sieval J.C. Hummelen and R.A.J. Janssen: Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar cell performance. Adv. Funct. Mater. 14 425 (2004).

    Article  CAS  Google Scholar 

  48. L. Zheng Q. Zhou X. Deng M. Yuan G. Yu and Y. Cao: Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J. Phys. Chem. B 108 11921 (2004).

    Article  CAS  Google Scholar 

  49. G. Padmanaban and S. Ramakrishnan: Conjugation length control in soluble poly[2-methoxy-5-((2’-ethylhexyl)oxy)-1,4-phenylenevinylene] (MEHPPV): Synthesis optical properties and energy transfer. J. Am. Chem. Soc. 122 2244 (2000).

    Article  CAS  Google Scholar 

  50. J. Roncali: Synthetic principles for bandgap control in linear p-conjugated systems. Chem. Rev. 97 173 (1997).

    Article  CAS  Google Scholar 

  51. H.A.M. van Mullekom J.A.J.M. Vekemans E.E. Havinga and E.W. Meijer: Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R: Reports R32 1 (2001).

    Article  Google Scholar 

  52. C. Winder and N.S. Sariciftci: Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14 1077 (2004).

    Article  CAS  Google Scholar 

  53. S.C.J. Meskers J. Huebner M. Oestreich and H. Baessler: Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: Experiment and Monte Carlo simulations. J. Phys. Chem. B 105 9139 (2001).

    Article  CAS  Google Scholar 

  54. D.M. de Leeuw M.M.J. Simenon A.R. Brown and R.E.F. Einerhand: Stability ofn -type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87 53 (1997).

    Article  Google Scholar 

  55. Y. Li Y. Cao J. Gao D. Wang G. Yu and A.J. Heeger: Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99 243 (1999).

    Article  CAS  Google Scholar 

  56. A.J. Bard and L.R. Faulkner: Electrochemical methods: Fundamentals and applications. Dianhuaxue 7 255 (2001).

    CAS  Google Scholar 

  57. V.V. Pavlishchuk A.W. Addison: Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 °C. Inorg. Chim. Acta 298 97 (2000).

    Article  CAS  Google Scholar 

  58. N.A. Iyengar B. Harrison R.S. Duran K.S. Schanze and J.R. Reynolds: Morphology evolution in nanoscale light-emitting domains in MEH-PPV/PMMA blends. Macromolecules 36 8978 (2003).

    Article  CAS  Google Scholar 

  59. F. Fusalba H.A. Ho L. Breau and D. Belanger: Poly(cyano-substituted diheteroareneethylene) as active electrode material for electrochemical supercapacitors. Chem. Mater. 12 2581 (2000).

    Article  CAS  Google Scholar 

  60. S. Ghosh and O. Inganas: Conducting polymer hydrogels as 3D electrodes. Applications for supercapacitors. Adv. Mater. 11 1214 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Reynolds.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YG., Thompson, B.C., Ananthakrishnan, N. et al. Variable band gap conjugated polymers for optoelectronic and redox applications. Journal of Materials Research 20, 3188–3198 (2005). https://doi.org/10.1557/jmr.2005.0396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0396

Navigation