Skip to main content
Log in

Anodization Behavior of Al Film on Si Substrate With Different Interlayers for Preparing Si-Based Nanoporous Alumina Template

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fabrication and applications of porous anodic alumina (PAA) have been studied for decades. Recently, preparation of PAA template directly formed on Si has been developed to enhance the performance of the fabricated nanostructures. However, less attention is paid to the anodization mechanism of the Al film on the Si substrate. In the current study, the PAA template was fabricated on Si of which an interlayer was sandwiched between the Al film and the Si substrate. The anodization behavior of the Al film, especially at the alumina–substrate interface, was investigated through the observation of the variation of oxidation current and the structural change of alumina. Different degree of dissolution at the pore base of alumina was revealed when a different interlayer was introduced, leading to the formation of the arched pore bottom. At the same time, difference in the variation of current was also observed as the pore base reached the alumina–Si interface. These features were different from those observed in conventional anodization of Al foils. The findings in this study are of scientific and technological importance for the template-mediated growth of nanostructures, especially for those to be integrated into Si devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Khizroev, J.A. Bain, and D. Litvinov, Nanotechnology 13, 619 (2002).

    Article  Google Scholar 

  2. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, and E.C. Dickey, J. Mater. Res. 17, 1162 (2002).

    Article  CAS  Google Scholar 

  3. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).

    Article  CAS  Google Scholar 

  4. F. Keller, M.S. Hunter, and D.L. Robinson, J. Electrochem. Soc. 100, 411 (1953).

    Article  CAS  Google Scholar 

  5. J.P. O’Sullivan and G.C. Wood, Proc. R. Soc. (London) A 317, 511 (1970).

    Google Scholar 

  6. A.P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, J. Appl. Phys. 84, 6023 (1998).

    Article  CAS  Google Scholar 

  7. D. Almawlawi, K.A. Bosnick, A. Osika, and M. Moskovits, Adv. Mater. 12, 1252 (2000).

    Article  CAS  Google Scholar 

  8. P.M. Paulus, F. Luis, M. Kröll, G. Schmid, and L.J. Jongh, J. Magn. Magn. Mater. 224, 180 (2001).

    Article  CAS  Google Scholar 

  9. Y. Yang, H. Chen, Y. Mei, J. Chen, X. Wu, and X. Bao, Acta Materia. 50, 5085 (2002).

    Article  CAS  Google Scholar 

  10. Y.C. Wang, I.C. Leu, and M.H. Hon, J. Mater. Chem. 12, 2439 (2002).

    Article  CAS  Google Scholar 

  11. D. Crouse, Y.H. Lo, A.E. Miller, and M. Crouse, Appl. Phys. Lett. 76, 49 (2000).

    Article  CAS  Google Scholar 

  12. A.I. Vorobyova, V.A. Sokol, and E.A. Outkina, Appl. Phys. A 67, 487 (1998).

    Article  CAS  Google Scholar 

  13. S.Z. Chu, K. Wada, S. Inoue, S. Todoroki, Y.K. Takahashi, and K. Hono, Chem. Mater. 14, 4595 (2002).

    Article  CAS  Google Scholar 

  14. M.S. Sander and L-S. Tan, Adv. Funct. Mater. 13, 393 (2003).

    Article  CAS  Google Scholar 

  15. O. Rabin, P.R. Herz, Y-M. Lin, A.I. Akinwande, S.B. Cronin, and M.S. Dresselhaus, Adv. Funct. Mater. 13, 631 (2003).

    Article  CAS  Google Scholar 

  16. S.Z. Chu, K. Wada, S. Inoue, and S. Todoroki, J. Electrochem. Soc. 149, B321 (2002).

    Article  CAS  Google Scholar 

  17. A. Mozalev, A. Poznyak, I. Mozaleva, and A.W. Hassel, Electro-chem. Comm. 3, 299 (2001).

    Article  CAS  Google Scholar 

  18. Y. Yang, H. Chen, Y. Mei, J. Chen, X. Wu, and X. Bao, Solid State Commun. 123, 279 (2002).

    Article  CAS  Google Scholar 

  19. G.E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S.H. Han, and G.C. Wood, Philos. Mag. A 55, 651 (1987).

    Article  CAS  Google Scholar 

  20. G. Patermarakis and K. Moussoutzanis, Electrochim. Acta 40, 699 (1995).

    Article  CAS  Google Scholar 

  21. F. Li, L. Zhang, and R.M. Metzger, Chem. Mater. 10, 2470 (1998).

    Article  CAS  Google Scholar 

  22. K. Shimizu, K. Kobayashi, P. Skeldon, G.E. Thompson, and G.C. Wood, Corros. Sci. 3, 701 (1997).

    Article  Google Scholar 

  23. X.G. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic/Plenum Publishers, New York, 2001), p. 48.

  24. V. Lehmann, Electrochemistry of Silicon (Wiley-VCH Verlag GmbH, Morlenbach, Germany, 2002), p. 79.

  25. D.J. Blackwood, L.M. Peter, and D.E. Williams, Electrochim. Acta 33, 1143 (1988).

    Article  CAS  Google Scholar 

  26. G.P. De Pauli, M.C. Giordano, and J.O. Zerbino, Electrochim. Acta 28, 1781 (1983).

    Article  Google Scholar 

  27. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, Houston, 1974).

  28. V. Lehmann, J. Electrochem. Soc. 143, 1313 (1996).

    Article  CAS  Google Scholar 

  29. V.P. Parkhutik and V.I. Shershulsky, Phys. D: Appl. Phys. 25, 1258 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. Leu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M.T., Leu, I.C. & Hon, M.H. Anodization Behavior of Al Film on Si Substrate With Different Interlayers for Preparing Si-Based Nanoporous Alumina Template. Journal of Materials Research 19, 888–895 (2004). https://doi.org/10.1557/jmr.2004.19.3.888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.3.888

Navigation